×

Sharp weighted Trudinger-Moser-Adams inequalities on the whole space and the existence of their extremals. (English) Zbl 1421.35099

Summary: Though there have been extensive works on the existence of maximizers for sharp first order Trudinger-Moser inequalities, much less is known for that of the maximizers for higher order Adams’ inequalities. In this paper, we mainly study the existence of extremals for sharp weighted Trudinger-Moser-Adams type inequalities with the Dirichlet and Sobolev norms (also known as the critical and subcritical Trudinger-Moser-Adams inequalities), see Theorems 1.1, 1.2, 1.3, 1.5, 1.7, 1.9 and 1.11. First, we employ the method based on level-sets of functions under consideration and Fourier transform to establish stronger weighted Trudinger-Moser-Adams type inequalities with the Dirichlet norm in \(W^{2,\frac{n}{2}}(\mathbb {R}^n)\) and \(W^{m,2}(\mathbb {R}^{2m})\) respectively. While the first order sharp weighted Trudinger-Moser inequality and its existence of extremal functions was established by M. Dong and the second author [Calc. Var. Partial Differ. Equ. 55, No. 4, Paper No. 88, 26 p. (2016; Zbl 1364.46026)] using a quasi-conformal type transform, such a transform does not work for the Adams inequality involving higher order derivatives. Since the absence of the Polyá-Szegő inequality and the failure of change of variable method for higher order derivatives for weighted inequalities, we will need several compact embedding results (Lemmas 2.1, 3.1 and 5.2). Through the compact embedding and scaling invariance of the subcritical Adams inequality, we investigate the attainability of best constants. Second, we employ the method developed by N. Lam et al. [Adv. Math. 352, 1253–1298 (2019; Zbl 1421.35008)] which uses the relationship between the supremums of the critical and subcritical inequalities (see also [N. Lam, Proc. Am. Math. Soc. 145, No. 11, 4885–4892 (2017; Zbl 1378.35009)]) to establish the existence of extremals for weighted Adams’ inequalities with the Sobolev norm. Third, using the Fourier rearrangement inequality established by E. Lenzmann and J.Sok [“A sharp rearrangement principle in Fourier space and symmetry results for PDEs with arbitrary order”, Preprint, arXiv:1805.06294], we can reduce our problem to the radial case and then establish the existence of the extremal functions for the non-weighted Adams inequalities. As an application, we derive new results on high-order critical Caffarelli-Kohn-Nirenberg interpolation inequalities whose parameters extend those proved by C.-S. Lin [Commun. Partial Differ. Equations 11, 1515–1538 (1986; Zbl 0635.46032), Theorems 1.13 and 1.14]. Furthermore, we also establish the relationship between the best constants of the weighted Trudinger-Moser-Adams type inequalities and the Caffarelli-Kohn-Nirenberg inequalities in the asymptotic sense (see Theorems 1.13 and 1.14).

MSC:

35J60 Nonlinear elliptic equations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adachi, S., Tanaka, K.: Trudinger type inequalities in \[\mathbb{R}^N\] RN and their best exponents. Proc. Am. Math. Soc. 128, 2051-2057 (1999) · Zbl 0980.46020
[2] Adams, D.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. 128, 383-398 (1998)
[3] Adimurthi, Druet, O.: Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality. Comm. Partial Differ. Equ. 29, 295-322 (2004) · Zbl 1076.46022 · doi:10.1081/PDE-120028854
[4] Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. Math. 138, 213-242 (1993) · Zbl 0826.58042 · doi:10.2307/2946638
[5] Cao, D.: Nontrivial solution of semilinear elliptic equation with critical exponent in \[\mathbb{R}^2\] R2. Commun. Partial Differ. Equ. 17, 407-435 (1992) · Zbl 0763.35034
[6] Carleson, L., Chang, S.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110, 113-127 (1986) · Zbl 0619.58013
[7] Chen, L., Li, J., Lu, G., Zhang, C.: Sharpened Adams inequality and ground state solutions to the bi-Laplacian equation in \[\mathbb{R}^4\] R4. Adv. Nonlinear Stud. 18(3), 429-452 (2018) · Zbl 1397.35097
[8] Csató, G., Roy, P.: Extremal functions for the singular Moser-Trudinger inequality in 2 dimensions. Calc. Var. Partial Differ. Equ. 54, 2341-2366 (2015) · Zbl 1327.35002 · doi:10.1007/s00526-015-0867-5
[9] Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalies with weights. Compos. Math. 53, 259-275 (1984) · Zbl 0563.46024
[10] do Ó, J.M.: N-Laplacian equations in \[\mathbb{R}^nRn\] with critical growth. Abstr. Appl. Anal. 2, 301-315 (1997) · Zbl 0932.35076
[11] Dong, M.: Existence of extremal functions for higher-order Caffarelli-Kohn-Nirenberg inequalities. Adv. Nonlinear Stud. 18(3), 543-553 (2018) · Zbl 1397.35006 · doi:10.1515/ans-2017-6037
[12] Dong, M., Lam, N., Lu, G.: Sharp weighted Trudinger-Moser and Caffarelli-Kohn-Nirenberg inequalities and their extremal functions. Nonlinear Anal. 173, 75-98 (2018) · Zbl 1397.46027 · doi:10.1016/j.na.2018.03.006
[13] Dong, M., Lu, G.: Best constants and existence of maximizers for weighted Trudinger-Moser inequalities. Calc. Var. Partial Differ. Equ. 55(4), 26 (2016) · Zbl 1364.46026 · doi:10.1007/s00526-016-1014-7
[14] Flucher, M.: Extremal functions for the Trudinger-Moser inequality in 2 dimensions. Comment. Math. Helv. 67, 471-497 (1992) · Zbl 0763.58008 · doi:10.1007/BF02566514
[15] Fontana, L., Morpurgo, C.: Sharp exponential integrability for critical Riesz potentials and fractional Laplacians on \[\mathbb{R}^nRn\]. Nonlinear Anal. 167, 85-122 (2018) · Zbl 1392.46034
[16] Ibrahim, S., Masmoudi, N., Nakanishi, K.: Trudinger-Moser inequality on the whole plane with the exact growth condition. J. Eur. Math. Soc. (JEMS) 17, 819-835 (2015) · Zbl 1317.35032 · doi:10.4171/JEMS/519
[17] Ishiwata, M.: Existence and nonexistence of maximizers for variational problems associated with Trudinger-Moser type inequalities in \[\mathbb{R}^N\] RN. Math. Ann. 351, 781-804 (2011) · Zbl 1241.58007
[18] Ishiwata, M., Nakamura, M., Wadade, H.: On the sharp constant for the weighted Trudinger-Moser type inequality of the scaling invariant form. Ann. Inst. Henri Poincar Anal. Non Linaire 31, 297-314 (2014) · Zbl 1311.46034 · doi:10.1016/j.anihpc.2013.03.004
[19] Judovic̆, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. Dokl. Akad. Nauk SSSR 138, 805-808 (1961) (in Russian)
[20] Kozono, H., Sato, T., Wadade, H.: Upper bound of the best constant of a Trudinger-Moser inequality and its application to a Gagliardo-Nirenberg inequality. Indiana Univ. Math. J. 55, 1951-1974 (2006) · Zbl 1126.46023 · doi:10.1512/iumj.2006.55.2743
[21] Lam, N.: Maximizers for the singular Trudinger-Moser inequalities in the subcritical cases. Proc. Amer. Math. Soc. 145, 4885-4892 (2017) · Zbl 1378.35009 · doi:10.1090/proc/13624
[22] Lam, N.: Equivalence of sharp Trudinger-Moser-Adams inequalities. Commun. Pure Appl. Anal. 16(3), 973-997 (2017) · Zbl 1364.35014 · doi:10.3934/cpaa.2017047
[23] Lam, N.: Sharp subcritical and critical Trudinger-Moser inequalities on \[R^2\] R2 and their extremal functions. Potential Anal. 46(1), 75-103 (2017) · Zbl 1356.35021
[24] Lam, N., Lu, G., Tang, H.: Sharp subcritical Moser-Trudinger inequalities on Heisenberg groups and subelliptic PDEs. Nonlinear Anal. 95, 77-92 (2014) · Zbl 1282.35393 · doi:10.1016/j.na.2013.08.031
[25] Lam, N., Lu, G., Tang, H.: Sharp affine and improved Moser-Trudinger-Adams type inequalities on unbounded domains in the spirit of Lions. J. Geom. Anal. 27(1), 300-334 (2017) · Zbl 1372.46027 · doi:10.1007/s12220-016-9682-2
[26] Lam, N., Lu, G.: Sharp Adams type inequalities in Sobolev spaces \[W^{m, \frac{n}{m}}(\mathbb{R}^n)\] Wm,nm(Rn) for arbitrary integer \[m\] m. J. Differ. Equ. 253, 1143-1171 (2012) · Zbl 1259.46029
[27] Lam, N., Lu, G.: Sharp singular Adams inequalities in high order Sobolev spaces. Methods Appl. Anal. 19, 243-266 (2012) · Zbl 1319.46027
[28] Lam, N., Lu, G.: Sharp Moser-Trudinger inequality on the Heisenberg group at the critical case and applications. Adv. Math. 231(6), 3259-3287 (2012) · Zbl 1278.42033 · doi:10.1016/j.aim.2012.09.004
[29] Lam, N., Lu, G.: A new approach to sharp Moser-Trudinger and Adams type inequalities: a rearrangement-free argument. J. Differ. Equ. 255, 298-325 (2013) · Zbl 1294.46034 · doi:10.1016/j.jde.2013.04.005
[30] Lam, N., Lu, G.: Sharp constants and optimizers for a class of the Caffarelli-Kohn-Nirenberg inequalities. Adv. Nonlinear Stud. 17, 457-480 (2017) · Zbl 1367.26035 · doi:10.1515/ans-2017-0012
[31] Lam, N., Lu, G.: Sharp singular Trudinger-Moser-Adams type inequalities with exact growth. In: Citti, G., Manfredini, M., Morbidelli, D., Polidoro, S., Uguzzoni, F. (eds.) Geometric Methods in PDE’s. Springer INdAM Series, 13, pp. 43-80. Springer, Cham (2015) · Zbl 1338.35016
[32] Lam, N., Lu, G., Zhang, L.: Equivalence of critical and subcritical sharp Trudinger-Moser-Adams inequalities. Rev. Mat. Iberoam. 33, 1219-1246 (2017) · Zbl 1387.46034 · doi:10.4171/RMI/969
[33] Lam, N., Lu, G., Zhang, L.: Existence and nonexistence of extremal functions for sharp Trudinger-Moser-inequalities. Adv. Math. 352, 1253-1298 (2019) · Zbl 1421.35008 · doi:10.1016/j.aim.2019.06.020
[34] Lam, N., Lu, G., Zhang, L.: Sharp singular Trudinger-Moser inequalities under different norms. Adv. Nonlinear Stud. 19(2), 239-261 (2019) · Zbl 1421.35007 · doi:10.1515/ans-2019-2042
[35] Lenzmann, E., Sok, J.: A sharp rearrangement principle in Fourier space and symmetry results for PDEs with arbitrary order. arXiv:1805.06294v1 · Zbl 1481.35092
[36] Li, J., Lu, G., Yang, Q.: Fourier analysis and optimal Hardy-Adams inequalities on hyperbolic spaces of any even dimension. Adv. Math. 333, 350-385 (2018) · Zbl 1402.46025 · doi:10.1016/j.aim.2018.05.035
[37] Li, J., Lu, G., Zhu, M.: Concentration-compactness principle for Trudinger-Moser inequalities on Heisenberg groups and existence of ground state solutions. Calc. Var. Partial Differ. Equ. 57(3), Art. 84 (2018) · Zbl 1402.46026
[38] Li, Y.X.: Moser-Trudinger inequality on compact Riemannian manifolds of dimension two. J. Partial Differ. Equ. 14, 163-192 (2001) · Zbl 0995.58021
[39] Li, Y.X., Ruf, B.: A sharp Moser-Trudinger type inequality for unbounded domains in \[\mathbb{R}^nRn\]. Indiana Univ. Math. J. 57, 451-480 (2008) · Zbl 1157.35032
[40] Lin, C.S.: Interpolation inequalities with weights. Commun. Partial Differ. Equ. 11, 1515-1538 (1986) · Zbl 0635.46032 · doi:10.1080/03605308608820473
[41] Lin, K.C.: Extremal functions for Moser’s inequality. Trans. Am. Math. Soc. 348, 2663-2671 (1996) · Zbl 0861.49001 · doi:10.1090/S0002-9947-96-01541-3
[42] Lu, G., Tang, H.: Sharp Moser-Trudinger inequalities on hyperbolic spaces with exact growth condition. J. Geom. Anal. 26(2), 837-857 (2016) · Zbl 1356.46031 · doi:10.1007/s12220-015-9573-y
[43] Lu, G., Tang, H.: Sharp singular Trudinger-Moser inequalities in Lorentz-Sobolev spaces. Adv. Nonlinear Stud. 16(3), 581-601 (2016) · Zbl 1359.46035 · doi:10.1515/ans-2015-5046
[44] Lu, G., Tang, H., Zhu, M.: Best constants for Adams’ inequalities with the exact growth condition in \[R^nRn\]. Adv. Nonlinear Stud. 15(4), 763-788 (2015) · Zbl 1352.46034
[45] Lu, G., Yang, Q.: Sharp Hardy-Adams inequalities for bi-Laplacian on hyperbolic space of dimension four. Adv. Math. 319, 567-598 (2017) · Zbl 1384.46026 · doi:10.1016/j.aim.2017.08.014
[46] Lu, G., Yang, Q.: A sharp Trudinger-Moser inequality on any bounded and convex planar domain. Calc. Var. Partial Differ. Equ. 55(6), Art. 153 (2016) · Zbl 1369.46029
[47] Lu, G., Yang, Y.: Adams’ inequalities for bi-Laplacian and extremal functions in dimension four. Adv. Math. 220, 1135-1170 (2009) · Zbl 1172.46021 · doi:10.1016/j.aim.2008.10.011
[48] Lu, G., Zhu, M.: A sharp Trudinger-Moser type inequality involving \[L^n\] Ln norm in the entire space \[R^nRn\]. J. Differ. Equ. 267(5), 3046-3082 (2019) · Zbl 1432.35081
[49] Malchiodi, A., Martinazzi, L.: Critical points of the Moser-Trudinger functional on a disk. J. Eur. Math. Soc. 16, 893-908 (2014) · Zbl 1304.49011 · doi:10.4171/JEMS/450
[50] Malchiodi, A., Ruiz, D.: New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces. Geom. Funct. Anal. 21, 1196-1217 (2011) · Zbl 1235.35094 · doi:10.1007/s00039-011-0134-7
[51] Masmoudi, N., Sani, F.: Adams’ inequality with the exact growth condition in \[\mathbb{R}^4\] R4. Commun. Pure Appl. Math. 67, 1307-1335 (2014) · Zbl 1309.46017
[52] Masmoudi, N., Sani, F.: Trudinger-Moser inequalities with the exact growth condition in \[\mathbb{R}^N\] RN and applications. Commun. Partial Differ. Equ. 40, 1408-1440 (2015) · Zbl 1345.46031
[53] Masmoudi, N., Sani, F.: Higher order Adams’ inequality with the exact growth condition. Commun. Contemp. Math. 20, 33 (2018) · Zbl 1408.46036 · doi:10.1142/S0219199717500729
[54] Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077-1092 (1970) · Zbl 0203.43701 · doi:10.1512/iumj.1971.20.20101
[55] Pohozaev, S.I.: The Sobolev embedding in the special case \[pl=n\] pl=n. In: Proceeding of the Technical Scientific Conference on Advances of Scientific Research 1964-1965. Mathematics Sections Moscov. Eberget. Inst. Moscow, pp. 158-170 (1965)
[56] Ruf, B.: A sharp Moser-Trudinger type inequality for unbounded domains in \[\mathbb{R}^2\] R2. J. Funct. Anal. 219, 340-367 (2005) · Zbl 1119.46033
[57] Ruf, B., Sani, F.: Sharp Adams-type inequality in \[\mathbb{R}^nRn\]. Trans. Am. Math. Soc. 365, 645-670 (2013) · Zbl 1280.46024
[58] Tang, H.: Equivalence of sharp Trudinger-Moser inequalities in Lorentz-Sobolev spaces. Potential Anal. (2019). https://doi.org/10.1007/s11118-019-09769-9 · doi:10.1007/s11118-019-09769-9
[59] Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473-483 (1967) · Zbl 0163.36402
[60] Wang, G., Ye, D.: A Hardy-Moser-Trudinger inequality. Adv. Math. 230(1), 294-320 (2012) · Zbl 1241.35007 · doi:10.1016/j.aim.2011.12.001
[61] Wang, X.: Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Commun. Pure Appl. Anal. 18(5), 2717-2733 (2019) · Zbl 1481.35177 · doi:10.3934/cpaa.2019121
[62] Wang, X.: Improved Hardy-Adams inequality on hyperbolic space of dimension four. Nonlinear Anal. 182, 45-56 (2019) · Zbl 1425.46023 · doi:10.1016/j.na.2018.12.007
[63] Zhang, C., Chen, L.: Concentration-compactness principle of singular Trudinger-Moser inequalities in \[R^nRn\] and \[n\] n-Laplace equations. Adv. Nonlinear Stud. 18(3), 567-585 (2018) · Zbl 1397.35117
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.