Hill, Michael A.; Meier, Lennart The \(C_2\)-spectrum \(\mathrm{Tmf}_1(3)\) and its invertible modules. (English) Zbl 1421.55002 Algebr. Geom. Topol. 17, No. 4, 1953-2011 (2017). Summary: We explore the \(C_2\)-equivariant spectra \(\operatorname{Tmf}_1(3)\) and \(\operatorname{TMF}_1(3)\). In particular, we compute their \(C_2\)-equivariant Picard groups and the \(C_2\)-equivariant Anderson dual of \(\operatorname{Tmf}_1(3)\). This implies corresponding results for the fixed-point spectra \(\operatorname{TMF}_0(3)\) and \(\operatorname{Tmf}_0(3)\). Furthermore, we prove a real Landweber exact functor theorem. Cited in 2 ReviewsCited in 11 Documents MSC: 55N34 Elliptic cohomology 55P42 Stable homotopy theory, spectra Keywords:topological modular forms; real homotopy theory; Picard group; Anderson duality PDF BibTeX XML Cite \textit{M. A. Hill} and \textit{L. Meier}, Algebr. Geom. Topol. 17, No. 4, 1953--2011 (2017; Zbl 1421.55002) Full Text: DOI References: [1] 10.4099/math1924.5.403 [2] 10.1093/qmath/17.1.367 · Zbl 0146.19101 [3] 10.1007/s00229-005-0582-1 · Zbl 1092.55007 [4] 10.2140/gtm.2008.13.11 · Zbl 1147.55005 [5] 10.1016/j.top.2005.08.005 · Zbl 1099.55002 [6] ; Behrens, Topological modular forms. Mathematical Surveys and Monographs, 201, 131, (2014) [7] 10.4310/HHA.2008.v10.n3.a4 · Zbl 1162.55010 [8] 10.2140/agt.2016.16.2459 · Zbl 1366.55009 [9] 10.1090/conm/346/06284 [10] 10.1016/j.aim.2015.07.013 · Zbl 1329.55012 [11] 10.1017/S1474748006000089 · Zbl 1140.14018 [12] 10.1007/978-3-540-37855-6 [13] ; Elmendorf, Rings, modules, and algebras in stable homotopy theory. Mathematical Surveys and Monographs, 47, (1997) [14] 10.2140/gtm.2009.16.49 · Zbl 1183.55001 [15] 10.1007/978-3-8348-9722-0 [16] 10.1007/978-1-4757-3849-0 [17] 10.1007/BF01467074 · Zbl 0431.14004 [18] ; Hill, Illinois J. Math., 53, 183, (2009) [19] 10.4310/HHA.2012.v14.n2.a9 · Zbl 1403.55003 [20] 10.4007/annals.2016.184.1.1 · Zbl 1366.55007 [21] 10.1007/s00222-015-0589-5 · Zbl 1338.55006 [22] ; Hohnhold, Topological modular forms. Mathematical Surveys and Monographs, 201, 35, (2014) [23] 10.1090/memo/0610 [24] 10.1016/S0040-9383(99)00065-8 · Zbl 0967.55010 [25] 10.1515/9781400881710 · Zbl 0576.14026 [26] 10.1090/S0002-9904-1968-11917-2 · Zbl 0181.26801 [27] 10.1093/imrn/rnt010 · Zbl 1419.55011 [28] 10.1112/S0024611505015492 · Zbl 1178.55007 [29] 10.1515/9781400830558 · Zbl 1175.18001 [30] 10.1007/978-3-642-01200-6_9 · Zbl 1206.55007 [31] 10.1090/conm/293/04944 [32] 10.4310/PAMQ.2009.v5.n2.a9 · Zbl 1192.55006 [33] 10.1090/memo/0755 [34] 10.1112/S0024611501012692 · Zbl 1017.55004 [35] 10.4310/HHA.2016.v18.n2.a1 · Zbl 1357.55002 [36] 10.1112/jtopol/jtv005 · Zbl 1325.55004 [37] 10.2140/gt.2016.20.3133 · Zbl 1373.14008 [38] 10.1016/j.jalgebra.2015.01.007 · Zbl 1329.14063 [39] 10.1016/j.aim.2007.04.007 · Zbl 1157.55006 [40] ; Naumann, Doc. Math., 14, 551, (2009) [41] 10.1017/S0017089515000397 · Zbl 1350.55012 [42] 10.1090/memo/0898 [43] ; Stojanoska, Doc. Math., 17, 271, (2012) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.