×

Weakly imposed symmetry and robust preconditioners for Biot’s consolidation model. (English) Zbl 1421.74095

Summary: We discuss the construction of robust preconditioners for finite element approximations of Biot’s consolidation model in poroelasticity. More precisely, we study finite element methods based on generalizations of the Hellinger-Reissner principle of linear elasticity, where the stress tensor is one of the unknowns. The Biot model has a number of applications in science, medicine, and engineering. A challenge in many of these applications is that the model parameters range over several orders of magnitude. Therefore, discretization procedures which are well behaved with respect to such variations are needed. The focus of the present paper will be on the construction of preconditioners, such that the preconditioned discrete systems are well-conditioned with respect to variations of the model parameters as well as refinements of the discretization. As a byproduct, we also obtain preconditioners for linear elasticity that are robust in the incompressible limit.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] D. N. Arnold, F. Brezzi, J. Douglas, Jr., PEERS: A new mixed finite element for plane elasticity, Japan J. Appl. Math. 1 (1984), no. 2, 347-367. · Zbl 0633.73074
[2] D. N. Arnold, J. Douglas, Jr. and C. P. Gupta, A family of higher order mixed finite element methods for plane elasticity, Numer. Math. 45 (1984), no. 1, 1-22. · Zbl 0558.73066
[3] D. N. Arnold, R. S. Falk and R. Winther, Preconditioning in {H({\rm div})} and applications, Math. Comp. 66 (1997), no. 219, 957-984. · Zbl 0870.65112
[4] D. N. Arnold, R. S. Falk and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry, Math. Comp. 76 (2007), no. 260, 1699-1723. · Zbl 1118.74046
[5] O. Axelsson, R. Blaheta and P. Byczanski, Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices, Comput. Vis. Sci. 15 (2012), no. 4, 191-207. · Zbl 1388.74035
[6] L. Berger, R. Bordas, D. Kay and S. Tavener, Stabilized lowest-order finite element approximation for linear three-field poroelasticity, SIAM J. Sci. Comput. 37 (2015), no. 5, A2222-A2245. · Zbl 1326.76054
[7] D. Boffi, F. Brezzi and M. Fortin, Reduced symmetry elements in linear elasticity, Commun. Pure Appl. Anal. 8 (2009), no. 1, 95-121. · Zbl 1154.74041
[8] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math. 44, Springer, Heidelberg, 2013. · Zbl 1277.65092
[9] J. H. Bramble, Multigrid Methods, Pitman Res. Notes in Math. 294, Longman Scientific & Technical, Harlow, 1993.
[10] Y. Chen, Y. Luo and M. Feng, Analysis of a discontinuous Galerkin method for the Biot’s consolidation problem, Appl. Math. Comput. 219 (2013), no. 17, 9043-9056. · Zbl 1290.74038
[11] B. Cockburn, J. Gopalakrishnan and J. Guzmán, A new elasticity element made for enforcing weak stress symmetry, Math. Comp. 79 (2010), no. 271, 1331-1349. · Zbl 1369.74078
[12] O. Coussy, Poromechanics, John Wiley & Sons, Hoboken, 2004.
[13] M. Farhloul and M. Fortin, Dual hybrid methods for the elasticity and the Stokes problems: A unified approach, Numer. Math. 76 (1997), no. 4, 419-440. · Zbl 0880.73064
[14] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer Ser. Comput. Math. 5, Springer, Berlin, 1986. · Zbl 0413.65081
[15] J. Gopalakrishnan and J. Guzmán, A second elasticity element using the matrix bubble, IMA J. Numer. Anal. 32 (2012), no. 1, 352-372. · Zbl 1232.74101
[16] J. B. Haga, H. Osnes and H. P. Langtangen, A parallel block preconditioner for large-scale poroelasticity with highly heterogeneous material parameters, Comput. Geosci. 16 (2012), no. 3, 723-734.
[17] R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in {{\rm H}({\rm curl})} and {{\rm H}({\rm div})} spaces, SIAM J. Numer. Anal. 45 (2007), no. 6, 2483-2509. · Zbl 1153.78006
[18] J. J. Lee, Robust error analysis of coupled mixed methods for Biot’s consolidation model, J. Sci. Comput. 69 (2016), no. 2, 610-632. · Zbl 1368.65234
[19] J. J. Lee, Towards a unified analysis of mixed methods for elasticity with weakly symmetric stress, Adv. Comput. Math. 42 (2016), no. 2, 361-376. · Zbl 1382.74120
[20] J. J. Lee, K.-A. Mardal and R. Winther, Parameter-robust discretization and preconditioning of Biot’s consolidation model, SIAM J. Sci. Comput. 39 (2017), no. 1, A1-A24. · Zbl 1381.76183
[21] K.-A. Mardal and R. Winther, Preconditioning discretizations of systems of partial differential equations, Numer. Linear Algebra Appl. 18 (2011), no. 1, 1-40. · Zbl 1249.65246
[22] M. A. Murad and A. F. D. Loula, Improved accuracy in finite element analysis of Biot’s consolidation problem, Comput. Methods Appl. Mech. Engrg. 95 (1992), no. 3, 359-382. · Zbl 0760.73068
[23] M. A. Murad and A. F. D. Loula, On stability and convergence of finite element approximations of Biot’s consolidation problem, Internat. J. Numer. Methods Engrg. 37 (1994), no. 4, 645-667. · Zbl 0791.76047
[24] P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: The continuous in time case, Comput. Geosci. 11 (2007), no. 2, 131-144. · Zbl 1117.74015
[25] P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: The discrete-in-time case, Comput. Geosci. 11 (2007), no. 2, 145-158. · Zbl 1117.74016
[26] P. J. Phillips and M. F. Wheeler, A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity, Comput. Geosci. 12 (2008), no. 4, 417-435. · Zbl 1155.74048
[27] M. B. Reed, An investigation of numerical errors in the analysis of consolidation by finite elements, Internat. J. Numer. Analyt. Methods Geomech. 8 (1984), no. 3, 243-257. · Zbl 0536.73089
[28] S. Rhebergen, G. N. Wells, A. J. Wathen and R. F. Katz, Three-field block preconditioners for models of coupled magma/mantle dynamics, SIAM J. Sci. Comput. 37 (2015), no. 5, A2270-A2294. · Zbl 1327.65055
[29] R. E. Showalter, Diffusion in poro-elastic media, J. Math. Anal. Appl. 251 (2000), no. 1, 310-340. · Zbl 0979.74018
[30] J. H. Smith and J. A. Humphrey, Interstitial transport and transvascular fluid exchange during infusion into brain and tumor tissue, Microvasc. Res. 73 (2007), no. 1, 58-73.
[31] R. Stenberg, A family of mixed finite elements for the elasticity problem, Numer. Math. 53 (1988), no. 5, 513-538. · Zbl 0632.73063
[32] K. H. Støverud, M. Alnæs, H. P. Langtangen, V. Haughton and K.-A. Mardal, Poro-elastic modeling of syringomyelia - A systematic study of the effects of pia mater, central canal, median fissure, white and gray matter on pressure wave propagation and fluid movement within the cervical spinal cord, Comput. Methods Biomech. Biomed. Engin. 19 (2016), no. 6, 686-698.
[33] P. A. Vermeer and A. Verruijt, An accuracy condition for consolidation by finite elements, Internat. J. Numer. Analyt. Methods Geomech. 5 (1981), no. 1, 1-14. · Zbl 0456.73060
[34] H. F. Wang, Theory of Linear Poroelasticity, Princeton Ser. Geophys., Princeton University Press, Princeton, 2000.
[35] S.-Y. Yi, A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model, Numer. Methods Partial Differ. Equ. 29 (2013), no. 5, 1749-1777. · Zbl 1274.74455
[36] S.-Y. Yi, Convergence analysis of a new mixed finite element method for Biot’s consolidation model, Numer. Methods Partial Differ. Equ. 30 (2014), no. 4, 1189-1210. · Zbl 1350.74024
[37] O. C. Zienkiewicz and T. Shiomi, Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution, Internat. J. Numer. Analyt. Methods Geomech. 8 (1984), no. 1, 71-96. · Zbl 0526.73099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.