×

zbMATH — the first resource for mathematics

A general fluid-sediment mixture model and constitutive theory validated in many flow regimes. (English) Zbl 1421.76247
Summary: We present a thermodynamically consistent constitutive model for fluid-saturated sediments, spanning dense to dilute regimes, developed from the basic balance laws for two-phase mixtures. The model can represent various limiting cases, such as pure fluid and dry grains. It is formulated to capture a number of key behaviours such as: (i) viscous inertial rheology of submerged wet grains under steady shearing flows, (ii) the critical state behaviour of grains, which causes granular Reynolds dilation/contraction due to shear, (iii) the change in the effective viscosity of the fluid due to the presence of suspended grains and (iv) the Darcy-like drag interaction observed in both dense and dilute mixtures, which gives rise to complex fluid-grain interactions under dilation and flow. The full constitutive model is combined with the basic equations of motion for each mixture phase and implemented in the material point method (MPM) to accurately model the coupled dynamics of the mixed system. Qualitative results show the breadth of problems which this model can address. Quantitative results demonstrate the accuracy of this model as compared with analytical limits and experimental observations of fluid and grain behaviours in inhomogeneous geometries.

MSC:
76T25 Granular flows
76T20 Suspensions
Software:
MPM3D
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abe, K.; Soga, K.; Bandara, S., Material point method for coupled hydromechanical problems, J. Geotech. Geoenviron. Engng, 140, 3, (2013)
[2] Allen, B.; Kudrolli, A., Depth resolved granular transport driven by shearing fluid flow, Phys. Rev. Fluids, 2, 2, (2017)
[3] Amarsid, L.; Delenne, J. Y.; Mutabaruka, P.; Monerie, Y.; Perales, F.; Radjai, F., Viscoinertial regime of immersed granular flows, Phys. Rev. E, 96, (2017)
[4] Anand, L.; Su, C., A theory for amorphous viscoplastic materials undergoing finite deformations, with applications to metallic glasses, J. Mech. Phys. Solids, 53, 6, 1362-1396, (2005) · Zbl 1120.74361
[5] Bandara, S.; Soga, K., Coupling of soil deformation and pore fluid flow using material point method, Comput. Geotech., 63, 199-214, (2015)
[6] Bardenhagen, S. G.; Kober, E. M., The generalized interpolation material point method, Comput. Model. Engng Sci., 5, 6, 477-496, (2004)
[7] Beetstra, R.; Van Der Hoef, M. A.; Kuipers, J. A. M., Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres, AIChE J., 53, 2, 489-501, (2007)
[8] Boyer, F.; Gauzelli, E.; Pouliquen, O., Unifying suspension and granular rheology, Phys. Rev. Lett., 107, 18, (2011)
[9] Brackbill, J. U.; Ruppel, H. M., Flip: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions, J. Comput. Phys., 65, 2, 314-343, (1986) · Zbl 0592.76090
[10] Brackbill, J. U.; Kothe, D. B.; Ruppel, H. M., Flip: a low-dissipation, particle-in-cell method for fluid flow, Comput. Phys. Commun., 48, 1, 25-38, (1988)
[11] Carman, P. C., Fluid flow through granular beds, Trans. Inst. Chem. Engrs, 15, 150-166, (1937)
[12] Cassar, C.; Nicolas, M.; Pouliquen, O., Submarine granular flows down inclined planes, Phys. Fluids, 17, 10, (2005) · Zbl 1188.76024
[13] Ceccato, F.; Beuth, L.; Vermeer, P. A.; Simonini, P., Two-phase material point method applied to the study of cone penetration, Comput. Geotech., 80, 440-452, (2016)
[14] Ceccato, F.; Simonini, P., Granular flow impact forces on protection structures: Mpm numerical simulations with different constitutive models, Proc. Engng, 158, 164-169, (2016)
[15] Chang, C.; Powell, R. L., Dynamic simulation of bimodal suspensions of hydrodynamically interacting spherical particles, J. Fluid Mech., 253, 1-25, (1993) · Zbl 0791.76086
[16] Chang, C.; Powell, R. L., Effect of particle size distributions on the rheology of concentrated bimodal suspensions, J. Rheol., 38, 1, 85-98, (1994)
[17] Chong, J. S.; Christiansen, E. B.; Baer, A. D., Rheology of concentrated suspensions, J. Appl. Polym. Sci., 15, 8, 2007-2021, (1971)
[18] Clift, R.; Grace, J. R.; Weber, M. E., Bubbles, Drops, and Particles, (2005), Courier Corporation
[19] Cook, B. K.; Noble, D. R.; Williams, J. R., A direct simulation method for particle-fluid systems, Engng Comput., 21, 2-3, 151-168, (2004) · Zbl 1062.76553
[20] Coussy, O., Poromechanics, (2004), Wiley
[21] Da Cruz, F.; Emam, S.; Prochnow, M.; Roux, J.-N.; Chevoir, F., Rheophysics of dense granular materials: discrete simulation of plane shear flows, Phys. Rev. E, 72, 2, (2005)
[22] Drumheller, D. S., On theories for reacting immiscible mixtures, Intl J. Engng Sci., 38, 347-382, (2000) · Zbl 1210.74076
[23] Dunatunga, S.; Kamrin, K., Continuum modelling and simulation of granular flows through their many phases, J. Fluid Mech., 779, 483-513, (2015) · Zbl 1360.76339
[24] Dupuit, J. É. J., Études théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables: avec des considérations relatives au régime des grandes eaux, au débouché à leur donner, et à la marche des alluvions dans les rivières à fond mobile, (1863), Dunod
[25] Einstein, A., Calculation of the viscosity-coefficient of a liquid in which a large number of small spheres are suspended in irregular distribution, Ann. Phys. Leipzig, 19, 286-306, (1906)
[26] Fern, E. J.; Soga, K., The role of constitutive models in mpm simulations of granular column collapses, Acta Geotech., 11, 3, 659-678, (2016)
[27] Gurtin, M. E.; Fried, E.; Anand, L., The Mechanics and Thermodynamics of Continua, (2010), Cambridge University Press
[28] Henann, D. L.; Kamrin, K., A predictive, size-dependent continuum model for dense granular flows, Proc. Natl Acad. Sci., 110, 17, 6730-6735, (2013) · Zbl 1292.76070
[29] Van Der Hoef, M. A.; Beetstra, R.; Kuipers, J. A. M., Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: results for the permeability and drag force, J. Fluid Mech., 528, 233-254, (2005) · Zbl 1165.76369
[30] Houssais, M.; Ortiz, C. P.; Durian, D. J.; Jerolmack, D. J., Onset of sediment transport is a continuous transition driven by fluid shear and granular creep, Nat. Commun., 6, 6527, (2015)
[31] Huang, P.; Zhang, X.; Ma, S.; Huang, X., Contact algorithms for the material point method in impact and penetration simulation, Intl J. Numer. Meth. Engng, 85, 4, 498-517, (2011) · Zbl 1217.74145
[32] Jackson, R., The Dynamics of Fluidized Particles, (2000), Cambridge University Press · Zbl 0956.76004
[33] Jop, P.; Forterre, Y.; Pouliquen, O., A constitutive law for dense granular flows, Nature, 441, 7094, (2006)
[34] Kamrin, K.; Henann, D. L., Nonlocal modeling of granular flows down inclines, Soft Matt., 11, 1, 179-185, (2015)
[35] Kamrin, K.; Koval, G., Nonlocal constitutive relation for steady granular flow, Phys. Rev. Lett., 108, 17, (2012)
[36] Klika, V., A guide through available mixture theories for applications, Critical Rev. Solid State Mater. Sci., 39, 2, 154-174, (2014)
[37] Koh, C. G.; Gao, M.; Luo, C., A new particle method for simulation of incompressible free surface flow problems, Intl J. Numer. Methods Engng, 89, 12, 1582-1604, (2012) · Zbl 1242.76272
[38] Maljaars, J. M.2016 A hybrid particle-mesh method for simulating free surface flows. Delft University of Technology.
[39] Mast, C. M.; Mackenzie-Helnwein, P.; Arduino, P.; Miller, G. R.; Shin, W., Mitigating kinematic locking in the material point method, J. Comput. Phys., 231, 16, 5351-5373, (2012)
[40] Pailha, M.; Pouliquen, O., A two-phase flow description of the initiation of underwater granular avalanches, J. Fluid Mech., 633, 115-135, (2009) · Zbl 1183.76906
[41] Poslinski, A. J.; Ryan, M. E.; Gupta, R. K.; Seshadri, S. G.; Frechette, F. J., Rheological behavior of filled polymeric systems ii. The effect of a bimodal size distribution of particulates, J. Rheol., 32, 8, 751-771, (1988)
[42] Rondon, L.; Pouliquen, O.; Aussillous, P., Granular collapse in a fluid: role of the initial volume fraction, Phys. Fluids, 23, 7, (2011)
[43] Roux, S. & Radjai, F.1998Texture-dependent rigid-plastic behavior. In Physics of Dry Granular Media (ed. Herrmann, H. J., Hovi, J. P. & Luding, S.), pp. 229-236. Springer.
[44] Roux, S. & Radjai, F.2001Statistical approach to the mechanical behavior of granular media. In Mechanics for a New Mellennium (ed. Aref, H. & Phillips, J. W.), pp. 181-196. Kluwer.
[45] Rudnicki, J. W.; Rice, J. R., Conditions for the localization of deformation in pressure-sensitive dilatant materials, J. Mech. Phys. Solids, 23, 6, 371-394, (1975)
[46] Shapiro, A. P.; Probstein, R. F., Random packings of spheres and fluidity limits of monodisperse and bidisperse suspensions, Phys. Rev. Lett., 68, 9, 1422-1425, (1992)
[47] Soga, K.; Alonso, E.; Yerro, A.; Kumar, K.; Bandara, S., Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method, Geotechnique, 66, 3, 248-273, (2015)
[48] Steffen, M.; Kirby, R. M.; Berzins, M., Analysis and reduction of quadrature errors in the material point method (mpm), Intl J. Numer. Meth. Engng, 76, 6, 922-948, (2008) · Zbl 1195.74300
[49] Stickel, J. J.; Powell, R. L., Fluid mechanics and rheology of dense suspensions, Annu. Rev. Fluid Mech., 37, 129-149, (2005) · Zbl 1117.76066
[50] Storms, R. F.; Ramarao, B. V.; Weiland, R. H., Low shear rate viscosity of bimodally dispersed suspensions, Powder Technol., 63, 3, 247-259, (1990)
[51] Sulsky, D.; Chen, Z.; Schreyer, H. L., A particle method for history-dependent materials, Comput. Meth. Appl. Mech. Engng, 118, 1-2, 179-196, (1994) · Zbl 0851.73078
[52] Truesdell, C.; Noll, W., The Non-Linear Field Theories of Mechanics, (1965), Springer · Zbl 0779.73004
[53] Turian, R. M.; Yuan, T.-F., Flow of slurries in pipelines, AIChE J., 23, 3, 232-243, (1977)
[54] Wilmanski, K., Continuum Thermodynamics - Part 1: Foundations, (2008), World Scientific · Zbl 1172.80002
[55] Zhao, Y.; Davis, R. H., Interaction of two touching spheres in a viscous fluid, Chem. Engng Sci., 57, 11, 1997-2006, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.