zbMATH — the first resource for mathematics

The conducting ring viewed as a wormhole. (English) Zbl 1421.78009
78A30 Electro- and magnetostatics
83C75 Space-time singularities, cosmic censorship, etc.
31A35 Connections of harmonic functions with differential equations in two dimensions
32U35 Plurisubharmonic extremal functions, pluricomplex Green functions
83A05 Special relativity
Full Text: DOI
[1] Mehra, J., The Beat of a Different Drum: The Life and Science of Richard Feynman, (1994), Oxford: Oxford University Press, Oxford · Zbl 0845.01012
[2] Eckert, M., Arnold Sommerfeld: Science, Life and Turbulent Times 1868–1951, (2013), Berlin: Springer, Berlin · Zbl 1293.01005
[3] Sommerfeld, A., Über verzweigte Potentiale im Raum, Proc. London Math. Soc., s1-28, 395-429, (1896) · JFM 28.0699.02
[4] Davis, L. C.; Reitz, J. R., Solution to potential problems near a conducting semi-infinite sheet or conducting disc, Am. J. Phys., 39, 1255-1265, (1971)
[5] Hobson, E. W., On Green’s function for a circular disc, with application to electrostatic problems, Trans. Cambridge Phil. Soc., 18, 277-291, (1900)
[6] James, O.; von Tunzelmann, E.; Franklin, P.; Thorne, K. S., Visualizing Interstellar’s wormhole, Am. J. Phys., 83, 486-499, (2015)
[7] Morris, M. S.; Thorne, K. S., Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity, Am. J. Phys., 56, 395-412, (1988) · Zbl 0957.83529
[8] Ellis, H. G., Ether flow through a drainhole: a particle model in general relativity, J. Math. Phys., 14, 104-118, (1973)
[9] Einstein, A.; Rosen, N., The particle problem in the general theory of relativity, Phys. Rev., 48, 73-77, (1935) · Zbl 0012.13401
[10] Alshal, H. M H.; Curtright, T. L.
[11] Flamm, L., Beiträge zur Einsteinschen Gravitationstheorie, Phys. Z., 17, 448-454, (1916) · JFM 46.1314.02
[12] Hartle, J. B., Gravity: An Introduction to Einstein’s General Relativity, (2003), Reading, MA: Addison-Wesley, Reading, MA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.