×

zbMATH — the first resource for mathematics

Criticality of Lagrange multipliers in variational systems. (English) Zbl 1421.90144

MSC:
90C31 Sensitivity, stability, parametric optimization
49J52 Nonsmooth analysis
49J53 Set-valued and variational analysis
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] H. H. Bauschke, J. M. Borwein, and W. Li, Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G), and error bounds in convex optimization, Math. Program., 86 (1999), pp. 135–160. · Zbl 0998.90088
[2] J. F. Bonnans, Local analysis of Newton-type methods for variational inequalities and nonlinear programming, Appl. Math. Optim., 29 (1994), pp. 161–186.
[3] J. F. Bonnans and H. Ramírez C., Perturbation analysis of second-order cone programming problems, Math. Program., 104 (2005), pp. 205–227.
[4] J. F. Bonnans and H. Ramírez C., Strong Regularity of Semidefinite Programming Problems, Technical report DIM–CMM 137, Universidad de Chile, Santiago, Chile, 2005.
[5] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000. · Zbl 0966.49001
[6] Y. Cui, D. Sun, and K.-C. Toh, On the asymptotic superlinear convergence of the augmented Lagrangian method for semidefinite programming with multiple solutions, preprint, , 2016.
[7] C. Ding, D. Sun and L. Zhang, Characterization of the robust isolated calmness for a class of conic programming problems, SIAM J. Optim., 27 (2017), pp. 67–90. · Zbl 1357.49100
[8] A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings: A View from Variational Analysis, 2nd ed., Springer, New York, 2014.
[9] H. Gfrerer and B. S. Mordukhovich, Second-order variational analysis of parametric constraint and variational systems, SIAM J. Optim., 29 (2019), 423–453. · Zbl 1408.49015
[10] H. Gfrerer and J. V. Outrata, On the Aubin property of a class of parameterized variational systems, Math. Methods Oper. Res., 86 (2017), pp. 443–467. · Zbl 1385.49007
[11] W. Hager and M. S. Gowda, Stability in the presence of degeneracy and error estimation, Math. Program., 85 (1999), pp. 181–192. · Zbl 0956.90049
[12] N. T. V. Hang, B. S. Mordukhovich, and M. E. Sarabi, Second-order variational analysis in second-order cone programming, Math. Program. (2018), .
[13] A. F. Izmailov, On the analytical and numerical stability of critical Lagrange multipliers, Comput. Math. Math. Phys., 45 (2005), pp. 930–946.
[14] A. F. Izmailov and M. V. Solodov, Stabilized SQP revisited, Math. Program., 133 (2012), pp. 93–120.
[15] A. F. Izmailov and M. V. Solodov, Newton-Type Methods for Optimization and Variational Problems, Springer, New York, 2014.
[16] A. F. Izmailov and M. V. Solodov, Critical Lagrange multipliers: What we currently know about them, how they spoil our life, and what we can do about it, TOP, 23 (2015), pp. 1–26. · Zbl 1317.90279
[17] Y. Liu and S. Pan, Strong Calmness of Perturbed KKT System for a Class of Conic Programming with Degenerate Solutions, preprint, .
[18] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory, Grundlehren Math. Wiss. 330, Springer, Berlin, 2006.
[19] B. S. Mordukhovich and M. E. Sarabi, Second-order analysis of piecewise linear functions with applications to optimization and stability, J. Optim. Theory Appl., 171 (2016), pp. 1–23.
[20] B. S. Mordukhovich and M. E. Sarabi, Critical multipliers in variational systems via second-order generalized differentiation, Math. Program., 169 (2018), pp. 605–648. · Zbl 1407.90314
[21] S. M. Robinson, Some continuity properties of polyhedral multifunctions, in Mathematical Programming at Oberwolfach, H. König, B. Korte, and K. Ritter, eds., Math. Program. Stud. 14, Springer, Berlin, 1981, pp. 206–214. · Zbl 0449.90090
[22] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin, 1998.
[23] A. Shapiro, On uniqueness of Lagrange multipliers in optimization problems subject to cone constraints, SIAM J. Optim., 7 (1997), pp. 508–518. · Zbl 0872.90086
[24] A. Shapiro, Duality, optimality conditions and perturbation analysis, in Semidefinite Programming and Applications Handbook, Kluwer Academic, Boston, MA, 2000, pp. 67–92.
[25] T. Y. Zhang and L. W. Zhang, Critical Multipliers in Semidefinite Programming, preprint, , 2018.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.