×

Scattered data interpolation based upon bivariate recursive polynomials. (English) Zbl 1422.65030

Summary: In this paper, firstly, based on new recursive algorithms of non-tensor-product-typed bivariate divided differences, scattered data interpolation schemes are constructed in the cases of odd and even interpolating nodes, respectively. Moreover, the corresponding error estimation is worked out, and equivalent formulae are obtained between bivariate high-order non-tensor-product-typed divided differences and high-order partial derivatives. Furthermore, the operation count for the addition/subtractions, multiplication, and divisions approximates \(O(n^2)\) in the computation of the interpolating polynomials presented, while the operation count approximates \(O(n^3)\) in the case of radial basis functions for sufficiently large \(n\). Finally, several numerical examples show that it is valid for the recursive interpolating polynomial schemes, and these interpolating polynomials change as the order of the interpolating nodes, although the node collection is the same.

MSC:

65D05 Numerical interpolation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wendland, H., Scattered Data Approximation (2005), Cambridge University Press: Cambridge University Press UK · Zbl 1075.65021
[2] Buhmann, M. D., Radial Basis Functions (2003), Cambridge University Press: Cambridge University Press UK · Zbl 1004.65015
[3] Wang, R. H.; Shi, X. Q.; Luo, Z. X.; Su, Z. X., Multivariate Spline Functions and their Applications (2001), Science Press/Kluwer Academic Publishers: Science Press/Kluwer Academic Publishers Beijing, New York, Dordrecht, Boston, London
[4] Lai, M. J., Convex preserving scattered data interpolation using bivariate \(C^1\) cubic splines, J. Comput. Appl. Math., 119, 249-258 (2000) · Zbl 0966.65016
[5] Zhou, T. H.; Lai, M. J., Scattered data interpolation by bivariate splines with higher approximation order, J. Comput. Appl. Math., 242, 125-140 (2013) · Zbl 1255.65034
[6] Zhan, Y., A bivariate \(C^3\) interpolation scheme, J. Comput. Appl. Math., 61, 179-188 (1995) · Zbl 0845.41007
[7] Zhu, C. G.; Wang, R. H., Lagrange interpolation by bivariate splines on cross-cut partitions, J. Comput. Appl. Math., 195, 326-340 (2006) · Zbl 1097.65023
[9] Qian, J.; Wang, F., On the approximation of the derivatives of spline quasi-interpolation in cubic spline space \(S_3^{1, 2}(\Delta_{m n}^{(2)})\), Numer. Math. TMA, 7, 1, 1-22 (2014) · Zbl 1313.65020
[10] Qian, J.; Wang, R. H.; Li, C. J., The bases of the Non-uniform cubic spline space \(S_3^{1, 2}(\Delta_{m n}^{(2)})\), Numer. Math. TMA, 5, 4, 635-652 (2012) · Zbl 1289.65021
[11] Qian, J.; Wang, R. H.; Zhu, C. G.; Wang, F., On spline quasi-interpolation in cubic spline space \(S_3^{1, 2}(\Delta_{m n}^{(2)})\), Sci. Sin. Math., 44, 7, 769-778 (2014), (in Chinese) · Zbl 1488.65025
[12] Wang, R. H.; Li, C. J., Bivariate quartic spline spaces and quasi-interpolation operators, J. Comput. Appl. Math., 190, 325-338 (2006) · Zbl 1088.41011
[13] Lai, Y. S.; Chen, F. L., Implicitizing rational surfaces using moving quadrics constructed from moving planes, J. Symbol. Comput., 77, 127-161 (2000), 119(2016): 249-258 · Zbl 1338.65050
[14] Lai, Y. S.; Du, W. P.; Duan, D. D.; Fang, X. K., Bounds on the number of solutions of polynomial systems and the Betti numbers of real piecewise algebraic hypersurfaces., J. Comput. Appl. Math. (2017)
[15] Lai, Y. S.; Du, W. P.; Wang, R. H., The Viro method for construction of Bernstein-Bézier algebraic hypersurface piece, Sci. China Math., 55, 6, 1269-1279 (2012) · Zbl 1273.14124
[16] Lai, Y. S.; Du, W. P.; Wang, R. H., The Viro method for construction of piecewise algebraic hypersurfaces, Abstr. Appl. Anal. (2013)
[17] Wang, R. H., Numerical Approximation (1999), High Education Press: High Education Press Beijing
[18] Salzer, H. E., Some new divided difference algorithm for two variables, (Langer, R. E., On Numerical Approximation (1959)) · Zbl 0086.11302
[19] Shekhtman, B., Case study in bivariate Hermite interpolation, J. Approx. Theory, 136, 140-150 (2005) · Zbl 1078.41004
[20] Bouboulisa, P.; Dallab, Leoni; Drakopoulosc, V., Construction of recurrent bivariate fractal interpolation surfaces and computation of their box-counting dimension, J. Approx. Theory, 141, 99-117 (2006) · Zbl 1101.65015
[21] Davydov, O. V.; Niirnberger, G.; Zeilfelder, F., Approximation order of bivariate spline interpolation for arbitrary smoothness, J. Comput. Appl. Math., 90, 117-134 (1998) · Zbl 0932.41002
[22] Dyn, N.; Floater, M. S., Multivariate polynomial interpolation on lower sets, J. Approx. Theory, 177, 34-42 (2014) · Zbl 1480.41001
[23] Mazroui, A.; Sbibih, D.; Tijini, A., Recursive computation of bivariate Hermite spline interpolants, Appl. Numer. Math., 57, 962-973 (2007) · Zbl 1127.65012
[24] Bailey, B. A., Multivariate polynomial interpolation and sampling in Paley-Wiener spaces, J. Approx. Theory, 164, 460-487 (2012) · Zbl 1241.41001
[25] Chai, J.; Lei, N.; Li, Y.; Xia, P., The proper interpolation space for multivariate Birkhoff interpolation, J. Comput. Appl. Math., 235, 3207-3214 (2011) · Zbl 1219.41002
[26] Allasia, G.; Bracco, C., Multivariate Hermite-Birkhoff interpolation by a class of cardinal basis function, Appl. Math. Comput., 218, 9248-9260 (2012) · Zbl 1245.65013
[27] Carnicer, J. M.; Gasca, M., Cubic pencils of lines and bivariate interpolation, J. Comput. Appl. Math., 219, 370-382 (2008) · Zbl 1151.41001
[28] Lavery, J. E., Shape-preserving interpolation of irregular data by bivariate curvature-based cubic \(L_1\) splines in spherical coordinates, Comput. Aided Geom. Design, 22, 818-837 (2005) · Zbl 1161.65314
[29] Li, A., Convexity preserving interpolation, Comput. Aided Geom. Design, 16, 127-147 (1999) · Zbl 0909.68183
[30] Caliaria, M.; De Marchib, S.; Vianelloa, M., Bivariate Lagrange interpolation at the Padua points: Computational aspects, J. Comput. Appl. Math., 221, 284-292 (2008) · Zbl 1152.65018
[31] Wang, R. H.; Qian, J., On branched continued fractions rational interpolation over pyramid-typed grids, Numer. Algorithms, 54, 47-72 (2010) · Zbl 1191.65009
[32] Wang, R. H.; Qian, J., Bivariate polynomial and continued fraction interpolation over ortho-triples, Appl. Math. Comput., 217, 7620-7635 (2011) · Zbl 1286.65016
[33] Sauer, T., Numerical Analysis (2012), China Machine Press: China Machine Press Beijing
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.