×

zbMATH — the first resource for mathematics

Goal-oriented adaptive mesh refinement for discontinuous Petrov-Galerkin methods. (English) Zbl 1422.65391

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
Software:
Camellia
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure Appl. Math. 37, John Wiley & Sons, New York, 2011.
[2] I. Babuška and A. Miller, The post-processing approach in the finite element method–Part 1: Calculation of displacements, stresses and other higher derivatives of the displacements, Internat. J. Numer. Methods Engrg., 20 (1984), pp. 1085–1109. · Zbl 0535.73052
[3] I. Babuška, R. B. Kellogg, and J. Pitkäranta, Direct and inverse error estimates for finite elements with mesh refinements, Numer. Math., 33 (1979), pp. 447–471.
[4] R. Becker, E. Estecahandy, and D. Trujillo, Weighted marking for goal-oriented adaptive finite element methods, SIAM J. Numer. Anal., 49 (2011), pp. 2451–2469. · Zbl 1245.65155
[5] R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer., 10 (2001), pp. 1–102. · Zbl 1105.65349
[6] D. Boffi, M. Fortin, and F. Brezzi, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math., Springer, Berlin, 2013. · Zbl 1277.65092
[7] J. Bramwell, L. Demkowicz, J. Gopalakrishnan, and Q. Weifeng, A locking-free \(hp\) DPG method for linear elasticity with symmetric stresses, Numer. Math., 122 (2012), pp. 671–707. · Zbl 1283.74094
[8] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, ESAIM Math. Model. Numer. Anal., 8 (1974), pp. 129–151. · Zbl 0338.90047
[9] Z. Cai, T. A. Manteuffel, S. F. McCormick, and J. Ruge, First-order system \(\mathcal{L}\mathcal{L}^\ast\) (FOSLL*): Scalar elliptic partial differential equations, SIAM J. Numer. Anal., 39 (2001), pp. 1418–1445. · Zbl 1008.65085
[10] C. Carstensen, P. Bringmann, F. Hellwig, and P. Wriggers, Nonlinear discontinuous Petrov–Galerkin methods, Numer. Math., 139 (2018), pp. 529–561. · Zbl 1398.65292
[11] C. Carstensen, L. Demkowicz, and J. Gopalakrishnan, A posteriori error control for DPG methods, SIAM J. Numer. Anal., 52 (2014), pp. 1335–1353. · Zbl 1320.65171
[12] C. Carstensen, L. Demkowicz, and J. Gopalakrishnan, Breaking spaces and forms for the DPG method and applications including Maxwell equations, Comput. Math. Appl., 72 (2016), pp. 494–522, https://doi.org/10.1016/j.camwa.2016.05.004. · Zbl 1359.65249
[13] C. Carstensen, M. Feischl, M. Page, and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl., 67 (2014), pp. 1195–1253. · Zbl 1350.65119
[14] C. Carstensen and F. Hellwig, Low-order discontinuous Petrov–Galerkin finite element methods for linear elasticity, SIAM J. Numer. Anal., 54 (2016), pp. 3388–3410. · Zbl 1457.65185
[15] C. Carstensen and S. Puttkammer, A low-order discontinuous Petrov–Galerkin method for the Stokes equations, Numer. Math., 140 (2018), pp. 1–34. · Zbl 1401.65131
[16] J. Chan, N. Heuer, T. Bui-Thanh, and L. Demkowicz, A robust DPG method for convection-dominated diffusion problems II: Adjoint boundary conditions and mesh-dependent test norms, Comput. Math. Appl., 67 (2014), pp. 771–795. · Zbl 1350.65120
[17] J. L. Chan, A DPG Method for Convection-Diffusion Problems, Ph.D. thesis, The University of Texas at Austin, 2013.
[18] J. H. Chaudhry, E. C. Cyr, K. Liu, T. A. Manteuffel, L. N. Olson, and L. Tang, Enhancing least-squares finite element methods through a quantity-of-interest, SIAM J. Numer. Anal., 52 (2014), pp. 3085–3105. · Zbl 1312.65186
[19] P. Clément, Approximation by finite element functions using local regularization, ESAIM Math. Model. Numer. Anal., 9 (1975), pp. 77–84.
[20] W. Dahmen, C. Huang, C. Schwab, and G. Welper, Adaptive Petrov–Galerkin methods for first order transport equations, SIAM J. Numer. Anal., 50 (2012), pp. 2420–2445. · Zbl 1260.65091
[21] L. Demkowicz, Computing with \(hp\) Finite Elements. I. One and Two Dimensional Elliptic and Maxwell Problems, Chapman & Hall/CRC Press, Boca Raton, FL, 2006.
[22] L. Demkowicz, Various Variational Formulations and Closed Range Theorem, ICES report 15-03, The University of Texas at Austin, 2015.
[23] L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov–Galerkin methods. Part I: The transport equation, Comput. Methods Appl. Mech. Engrg., 199 (2010), pp. 1558–1572. · Zbl 1231.76142
[24] L. Demkowicz and J. Gopalakrishnan, Analysis of the DPG method for the Poisson equation, SIAM J. Numer. Anal., 49 (2011), pp. 1788–1809. · Zbl 1237.65122
[25] L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions, Numer. Methods Partial Differential Equations, 27 (2011), pp. 70–105. · Zbl 1208.65164
[26] L. Demkowicz and J. Gopalakrishnan, Discontinuous Petrov–Galerkin (DPG) Method, Encyclopedia of Computational Mechanics, 2nd ed., Wiley Online Library, 2017.
[27] L. Demkowicz, J. Gopalakrishnan, and B. Keith, The DPG-Star Method, preprint, arXiv:1809.03153 [math.NA], 2018.
[28] L. Demkowicz, J. Gopalakrishnan, S. Nagaraj, and P. Sepulveda, A spacetime DPG method for the Schrödinger equation, SIAM J. Numer. Anal., 55 (2017), pp. 1740–1759. · Zbl 1369.65122
[29] L. Demkowicz, J. Gopalakrishnan, and A. H. Niemi, A class of discontinuous Petrov–Galerkin methods. Part III: Adaptivity, Appl. Numer. Math., 62 (2012), pp. 396–427. · Zbl 1316.76047
[30] L. Demkowicz and N. Heuer, Robust DPG method for convection-dominated diffusion problems, SIAM J. Numer. Anal., 51 (2013), pp. 2514–2537. · Zbl 1290.65088
[31] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszyński, W. Rachowicz, and A. Zdunek, Computing with \(hp\) Finite Elements. II. Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications, Chapman & Hall/CRC Press, Boca Raton, FL, 2007.
[32] A. Demlow and A. N. Hirani, A posteriori error estimates for finite element exterior calculus: The de Rham complex, Found. Comput. Math., 14 (2014), pp. 1337–1371. · Zbl 1308.65187
[33] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal., 33 (1996), pp. 1106–1124.
[34] T. Ellis, L. Demkowicz, and J. Chan, Locally conservative discontinuous Petrov–Galerkin finite elements for fluid problems, Comput. Math. Appl., 68 (2014), pp. 1530–1549. · Zbl 1364.76086
[35] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to adaptive methods for differential equations, Acta Numer., 4 (1995), pp. 105–158. · Zbl 0829.65122
[36] R. Falk and R. Winther, Local bounded cochain projections, Math. Comp., 83 (2014), pp. 2631–2656.
[37] M. Feischl, D. Praetorius, and K. G. Van der Zee, An abstract analysis of optimal goal-oriented adaptivity, SIAM J. Numer. Anal., 54 (2016), pp. 1423–1448. · Zbl 1382.65392
[38] F. Fuentes, L. Demkowicz, and A. Wilder, Using a DPG method to validate DMA experimental calibration of viscoelastic materials, Comput. Methods Appl. Mech. Engrg., 325 (2017), pp. 748–765, https://doi.org/10.1016/j.cma.2017.07.012.
[39] F. Fuentes, B. Keith, L. Demkowicz, and P. Le Tallec, Coupled variational formulations of linear elasticity and the DPG methodology, J. Comput. Phys., 348 (2017), pp. 715–731. · Zbl 1380.65367
[40] T. Führer, Superconvergent DPG methods for second order elliptic problems, Comput. Methods Appl. Math., to appear, 2019.
[41] T. Führer and N. Heuer, Robust coupling of DPG and BEM for a singularly perturbed transmission problem, Comput. Math. Appl., 74 (2017), pp. 1940–1954. · Zbl 1405.65148
[42] T. Führer, N. Heuer, and E. P. Stephan, On the DPG method for Signorini problems, IMA J. Numer. Anal., 38 (2018), pp. 1893–1926, https://doi.org/10.1093/imanum/drx048. · Zbl 06983866
[43] M. B. Giles and E. Süli, Adjoint methods for PDEs: A posteriori error analysis and postprocessing by duality, Acta Numer., 11 (2002), pp. 145–236.
[44] J. Gopalakrishnan and W. Qiu, An analysis of the practical DPG method, Math. Comp., 83 (2014), pp. 537–552. · Zbl 1282.65154
[45] R. Hartmann, Adjoint consistency analysis of discontinuous Galerkin discretizations, SIAM J. Numer. Anal., 45 (2007), pp. 2671–2696. · Zbl 1189.76341
[46] N. Heuer and M. Karkulik, A robust DPG method for singularly perturbed reaction-diffusion problems, SIAM J. Numer. Anal., 55 (2017), pp. 1218–1242. · Zbl 1362.65125
[47] M. Holst and S. Pollock, Convergence of goal-oriented adaptive finite element methods for nonsymmetric problems, Numer. Methods Partial Differential Equations, 32 (2016), pp. 479–509, https://doi.org/10.1002/num.22002. · Zbl 1337.65139
[48] B. Keith, New Ideas in Adjoint Methods for PDEs: A Saddle-Point Paradigm for Finite Element Analysis and its Role in the DPG Methodology, Ph.D. thesis, The University of Texas at Austin, 2018.
[49] B. Keith, F. Fuentes, and L. Demkowicz, The DPG methodology applied to different variational formulations of linear elasticity, Comput. Methods Appl. Mech. Engrg., 309 (2016), pp. 579–609, https://doi.org/10.1016/j.cma.2016.05.034.
[50] B. Keith, P. Knechtges, N. V. Roberts, S. Elgeti, M. Behr, and L. Demkowicz, An ultraweak DPG method for viscoelastic fluids, J. Non-Newton. Fluid Mech., 247 (2017), pp. 107–122, https://doi.org/10.1016/j.jnnfm.2017.06.006.
[51] B. Keith, S. Petrides, F. Fuentes, and L. Demkowicz, Discrete least-squares finite element methods, Comput. Methods Appl. Mech. Engrg., 327 (2017), pp. 226–255.
[52] P. Ladevèze, Strict upper error bounds on computed outputs of interest in computational structural mechanics, Comput. Mech., 42 (2008), pp. 271–286.
[53] P. Ladevèze, F. Pled, and L. Chamoin, New bounding techniques for goal-oriented error estimation applied to linear problems, Internat. J. Numer. Methods Engrg., 93 (2013), pp. 1345–1380. · Zbl 1352.74389
[54] M. S. Mommer and R. Stevenson, A goal-oriented adaptive finite element method with convergence rates, SIAM J. Numer. Anal., 47 (2009), pp. 861–886. · Zbl 1195.65174
[55] P. Monk, Finite Element Methods for Maxwell’s Equations, Numer. Anal. Sci. Comput. Ser., Oxford University Press, Oxford, 2003.
[56] S. Nagaraj, S. Petrides, and L. F. Demkowicz, Construction of DPG Fortin operators for second order problems, Comput. Math. Appl., 74 (2017), pp. 1964–1980. · Zbl 1397.65284
[57] J. T. Oden, L. Demkowicz, W. Rachowicz, and T. Westermann, Toward a universal \(hp\) adaptive finite element strategy, part 2. A posteriori error estimation, Comput. Methods Appl. Mech. Engrg., 77 (1989), pp. 113–180.
[58] J. T. Oden and S. Prudhomme, New approaches to error estimation and adaptivity for the Stokes and Oseen equations, Internat. J. Numer. Methods Fluids, 31 (1999), pp. 3–15. · Zbl 0984.76052
[59] J. T. Oden and S. Prudhomme, Goal-oriented error estimation and adaptivity for the finite element method, Comput. Math. Appl., 41 (2001), pp. 735–756. · Zbl 0987.65110
[60] M. Paraschivoiu, J. Peraire, and A. T. Patera, A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations, Comput. Methods Appl. Mech. Engrg., 150 (1997), pp. 289–312. · Zbl 0907.65102
[61] S. Petrides and L. F. Demkowicz, An adaptive DPG method for high frequency time-harmonic wave propagation problems, Comput. Math. Appl., 74 (2017), pp. 1999–2017. · Zbl 1397.65288
[62] S. Prudhomme and J. T. Oden, On goal-oriented error estimation for elliptic problems: Application to the control of pointwise errors, Comput. Methods Appl. Mech. Engrg., 176 (1999), pp. 313–331. · Zbl 0945.65123
[63] N. V. Roberts, A Discontinuous Petrov–Galerkin Methodology for Incompressible Flow Problems, Ph.D. thesis, The University of Texas at Austin, 2013.
[64] N. V. Roberts, Camellia: A software framework for discontinuous Petrov–Galerkin methods, Comput. Math. Appl., 68 (2014), pp. 1581–1604. · Zbl 1364.65002
[65] N. V. Roberts, Camellia v 1.0 Manual: Part I, Technical report ANL/ALCF-16/3, Argonne National Laboratory, Argonne, IL, 2016.
[66] N. V. Roberts, T. Bui-Thanh, and L. Demkowicz, The DPG method for the Stokes problem, Comput. Math. Appl., 67 (2014), pp. 966–995. · Zbl 1381.76200
[67] N. V. Roberts, L. Demkowicz, and R. Moser, A discontinuous Petrov–Galerkin methodology for adaptive solutions to the incompressible Navier–Stokes equations, J. Comput. Phys., 301 (2015), pp. 456–483. · Zbl 1349.76259
[68] J. Schöberl, A posteriori error estimates for Maxwell equations, Math. Comp., 77 (2008), pp. 633–649. · Zbl 1136.78016
[69] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), pp. 483–493. · Zbl 0696.65007
[70] D. B. Szyld, The many proofs of an identity on the norm of oblique projections, Numer. Algorithms, 42 (2006), pp. 309–323.
[71] A. Vaziri Astaneh, F. Fuentes, J. Mora, and L. Demkowicz, High-order polygonal discontinuous Petrov–Galerkin (PolyDPG) methods using ultraweak formulations, Comput. Methods Appl. Mech. Engrg., 332 (2017), pp. 686–711.
[72] R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques, J. Comput. Appl. Math., 50 (1994), pp. 67–83.
[73] J. Zitelli, I. Muga, L. Demkowicz, J. Gopalakrishnan, D. Pardo, and V. M. Calo, A class of discontinuous Petrov–Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in \(1\)D, J. Comput. Phys., 230 (2011), pp. 2406–2432. · Zbl 1316.76054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.