×

Geometric phases in Majorana zero-energy state. (English) Zbl 1422.81120

Summary: The usual Berry phase for a Majorana zero-energy state is zero. In this manuscript, we propose a generalized geometric phase for Majorana zero-energy state, which is non-zero for the electron or hole, respectively. We calculate these non-zero geometric phases in a Ferromagnet (FI)/Topological Insulator (TI)/Superconductor (SC) hybrid system, whose magnetization can be manipulated by changing adiabatically the spin degree of freedom. The non-zero geometric phases have potential application on the topological quantum computation treatment of Majorana zero-energy modes. We also discuss the non-adiabatic geometric phase associated with Majorana zero-energy state by the path integral method.

MSC:

81Q70 Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory
82D55 Statistical mechanics of superconductors
81V10 Electromagnetic interaction; quantum electrodynamics
82D40 Statistical mechanics of magnetic materials
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Majorana II, E.: Teoria simmetrica dell’elettrone e del positrone. Nuovo Cimento. 14, 171-184 (1937) · Zbl 0016.42707 · doi:10.1007/BF02961314
[2] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Sankar, D.S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083-1159 (2008) · Zbl 1205.81062 · doi:10.1103/RevModPhys.80.1083
[3] Wilczek, F.: Majorana returns. Nat. Phys. 5, 614-618 (2009) · doi:10.1038/nphys1380
[4] Fu, L.; Kane, CL, No article title, Phys. Rev. Lett., 10 (2008) · doi:10.1103/PhysRevLett.100.096407
[5] Sau, J.D., Lutchyn, R.M., Tewari, S., Das Sarma, S.: Generic New Platform for Topological Quantum Computation Using Semiconductor Heterostructures. Phys. Rev. Lett. 104, 040502 (2010) · doi:10.1103/PhysRevLett.104.040502
[6] Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P.A.M., Kouwenhoven, L.P.: Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices. Science. 336, 1003-1007 (2012) · doi:10.1126/science.1222360
[7] Rokhinson, L.P., Liu, X., Furdyna, J.K.: The fractional a.c. Josephson effect in a semiconductor – superconductor nanowire as a signature of Majorana particles. Nat. Phys. 8, 795-799 (2012) · doi:10.1038/nphys2429
[8] Deng, M.T., Yu, C.L., Huang, G.Y., Larsson, M., Caroff, P., Xu, H.Q.: Anomalous Zero-Bias Conductance Peak in a Nb-InSb Nanowire-Nb Hybrid Device. Nano Lett. 12, 6414-6419 (2012) · doi:10.1021/nl303758w
[9] Das, A., Ronen, Y., Most, Y., Oreg, Y., Heiblum, M., Shtrikman, H.: Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887-895 (2012) · doi:10.1038/nphys2479
[10] He, Q.L., Pan, L., Stern, A.L., Burks, E.C., Che, X., Yin, G., Wang, J., Lian, B., Zhou, Q., Choi, E.S., Murata, K., Kou, X., Chen, Z., Nie, T., Shao, Q., Fan, Y., Zhang, S.C., Liu, K., Xia, J., Wang, K.L.: Chiral Majorana fermion modes in a quantum anomalous Hall insulator – superconductor structure. Science. 357, 294-299 (2017) · Zbl 1404.81333 · doi:10.1126/science.aag2792
[11] Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A. 264, 94-99 (1999) · Zbl 0949.81009 · doi:10.1016/S0375-9601(99)00803-8
[12] Pachos, J.; Zanardi, P.; Rasetti, M., No article title, Phys. Rev. A, 61 (2000) · doi:10.1103/PhysRevA.61.010305
[13] Jones, J.A., Vedral, V., Ekert, A., Castagnoli, G.: Geometric quantum computation using nuclear magnetic resonance. Nature. 403, 869-871 (2000) · doi:10.1038/35002528
[14] Falci, G., Fazio, R., Palma, G.M., Siewert, J., Vedral, V.: Detection of geometric phases in superconducting nanocircuits. Nature. 407, 355-358 (2000) · doi:10.1038/35030052
[15] Duan, LM; Cirac, JI; Zoller, P., No article title, Science, 29, 1695 (2001) · doi:10.1126/science.1058835
[16] Solinas, P., Zanardi, P., Zangghi, N., Rossi, F.: Holonomic quantum gates: A semiconductor-based implementation. Phys. Rev. A. 67, 062315 (2003) · doi:10.1103/PhysRevA.67.062315
[17] Wang, XB; Keiji, M., No article title, Phys. Rev. Lett., 87 (2001) · doi:10.1103/PhysRevLett.87.097901
[18] Zhu, S.L., Wang, Z.D.: Implementation of Universal Quantum Gates Based on Nonadiabatic Geometric Phases. Phys. Rev. Lett. 89, 097902 (2002) · doi:10.1103/PhysRevLett.89.097902
[19] Li, X.Q., Cen, X., Huang, G.X., Ma, L., Yan, Y.J.: Nonadiabatic geometric quantum computation with trapped ions. Phys. Rev. A. 66, 042320 (2002) · doi:10.1103/PhysRevA.66.042320
[20] Halperin, B.J., Oreg, Y., Stern, A., Refael, G., Alicea, J., von Oppen, F.: Adiabatic manipulations of Majorana fermions in a three-dimensional network of quantum wires. Phys. Rev. B85. 85, 144501 (2012) · doi:10.1103/PhysRevB.85.144501
[21] X. J. Luo, Y. P. He, T. F. J. Poon, X. Liu and X. J. Liu, arXiv/cond-mat/1803.02173 (2018)
[22] Wang, ZC; Li, BZ, No article title, Phys. Rev. A, 67 (2003) · doi:10.1103/PhysRevA.67.062315
[23] Kuratsuji, H., Iida, S.: Effective Action for Adiabatic Process: Dynamical Meaning of Berry and Simon’s Phase. Prog. Theo. Phys. 74, 439-445 (1985) · Zbl 0979.81509 · doi:10.1143/PTP.74.439
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.