×

Gibbs posterior inference on value-at-risk. (English) Zbl 1422.91376

Summary: Accurate estimation of value-at-risk (VaR) and assessment of associated uncertainty is crucial for both insurers and regulators, particularly in Europe. Existing approaches link data and VaR indirectly by first linking data to the parameter of a probability model, and then expressing VaR as a function of that parameter. This indirect approach exposes the insurer to model misspecification bias or estimation inefficiency, depending on whether the parameter is finite- or infinite-dimensional. In this paper, we link data and VaR directly via what we call a discrepancy function, and this leads naturally to a Gibbs posterior distribution for VaR that does not suffer from the aforementioned biases and inefficiencies. Asymptotic consistency and root-\(n\) concentration rate of the Gibbs posterior are established, and simulations highlight its superior finite-sample performance compared to other approaches.

MSC:

91B30 Risk theory, insurance (MSC2010)
62P05 Applications of statistics to actuarial sciences and financial mathematics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Artzner, P.; Eber, J. M.; Heath, D., Coherent measures of risk, Mathematical Finance, 9, 3, 203-228, (1999) · Zbl 0980.91042
[2] Bignozzi, V.; Tsanakas, A., Parameter uncertainty and residual estimation risk, Journal of Risk and Insurance, 83, 4, 949-978, (2016)
[3] Bissiri, P.; Holmes, C.; Walker, S., A general framework for updating belief distribution, Journal of Royal Statistical Society, Series B-Statistical Methodology, 78, 5, 1103-1130, (2016) · Zbl 1414.62039
[4] Brazauskas, Y.; Kleefeld, A., Modeling severity and measuring tail risk of Norwegian fire claims, North American Actuarial Journal, 20, 1, 1-16, (2016) · Zbl 1414.62415
[5] Chernozhukov, V.; Hong, H., An MCMC approach to classical estimation, Journal of Econometrics, 115, 293-346, (2003) · Zbl 1043.62022
[6] Dowd, K., Estimating VaR with order statistics, Journal of Derivatives, 8, 3, 23-30, (2001)
[7] Embrechts, P.; Resnick, S. I.; Samorodnitsky, G., Extreme value theory as a risk management tool, North American Actuarial Journal, 3, 2, 30-41, (1999) · Zbl 1082.91530
[8] Ferguson, T. S., Bayesian analysis of some nonparametric problems, The Annals of Statistics, 1, 209-230, (1973) · Zbl 0255.62037
[9] Fröhlich, A.; Weng, A., Modeling parameter uncertainty for risk capital calculation, European Actuarial Journal, 5, 79-112, (2015) · Zbl 1329.91061
[10] Gerrard, R.; Tsanakas, A., Failure probability under parameter uncertainty, Risk Analysis, 31, 727-744, (2011)
[11] 2010The Dirichlet process, related priors and posterior asymptotics. In Bayesian Nonparametrics, Cambridge University Press, p. 35-79
[12] Ghosh, J. K.; Ramamoorthi, R. V., Bayesian nonparametrics, (2003), Springer: New York, Springer
[13] Gourierouxa, C.; Laurent, J. P.; Scaillet, O., Sensitivity analysis of Values at Risk, Journal of Empirical Finance, 7, 225-245, (2000)
[14] Grünwald, P.; Van Ommen, T., Inconsistency of Bayesian inference for misspecified linear models, and a proposal for repairing it, Bayesian Analysis, 12, 4, 1069-1103, (2014) · Zbl 1384.62088
[15] Holmes, C.; Walker, S. G., Assigning a value to a power likelihood in a Bayesian model, Biometrika, 104, 497-503, (2017) · Zbl 07072223
[16] Hong, L.; Martin, R., A flexible Bayesian nonparametric model for predicting future insurance claims, North American Actuarial Journal, 21, 2, 228-241, (2017) · Zbl 1414.91201
[17] Hong, L.; Martin, R., Dirichlet process mixture models for insurance loss data, Scandinavian Actuarial Journal, 6, 545-554, (2018) · Zbl 1416.91188
[18] Jiang, W.; Tanner, M. A., Gibbs posterior for variable selection in high-dimensional classification and data mining, The Annals of Statistics, 36, 5, 2207-2231, (2008) · Zbl 1274.62227
[19] Koltchinskii, V. I., M-estimation, convexity and quantiles, The Annals of Statistics, 25, 2, 435-477, (1997) · Zbl 0878.62037
[20] Mdziniso, N. C.; Cooray, K., Odd Pareto families of distributions for modeling loss payment data, Scandinavian Actuarial Journal, 1, 42-63, (2018) · Zbl 1416.91208
[21] Müller, P.; Quintana, F. A., Nonparametric Bayesian data analysis, Statistical Science, 19, 95-110, (2004) · Zbl 1057.62032
[22] 2009. Accessed on June 26, 2018
[23] 2017Gibbs posterior distributions: new theory and applications (doctoral dissertation). University of Illinois at Chicago. Retrieved from
[24] Syring, N.; Martin, R., Gibbs posterior inference on the minimum clinically important difference, Journal of Statistical Planning and Inference, 187, 67-77, (2017) · Zbl 1391.62251
[25] 2017bCalibrating general posterior credible regions, Biometrika, to appear.
[26] 2017cRobust and rate-optimal Gibbs posterior inference on the boundary of a noisy image, Submitted manuscript.
[27] Van Der Vaart, A. W., Asymptotic Statistics, (1998), New York: Cambridge University Press, New York · Zbl 0910.62001
[28] Zhang, T., From ε-entropy to KL-entropy: analysis of minimum information complexity density estimation, The Annals of Statistics, 34, 2180-2210, (2006) · Zbl 1106.62005
[29] Zhang, T., Information theoretical upper and lower bounds for statistical estimation, IEEE Transaction on Information Theory, 52, 1307-1321, (2006) · Zbl 1320.94033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.