Rasouli, Saeed; Zarin, Zeinab On residuated lattices with left and right internal state. (English) Zbl 1423.03259 Fuzzy Sets Syst. 373, 37-61 (2019). Summary: In this paper, notions of left- and right-state operators on residuated lattices are introduced and some related properties of such operators are investigated. Filters and normal filters generated by a subset in a state residuated lattice are characterized and it is shown that the lattice of filters forms a frame. Subdirectly irreducible state residuated lattices are characterized. The notion of state coannihilator is introduced and a connection between them and Galois connection is established. Finally, it is shown that the set of state coannihilators forms a complete Boolean algebra. Cited in 5 Documents MSC: 03G25 Other algebras related to logic 06F05 Ordered semigroups and monoids 06A15 Galois correspondences, closure operators (in relation to ordered sets) 06D20 Heyting algebras (lattice-theoretic aspects) Keywords:residuated lattice; state residuated lattice; Galois connection; state filter; state congruence; Heyting algebra; state coannihilator PDF BibTeX XML Cite \textit{S. Rasouli} and \textit{Z. Zarin}, Fuzzy Sets Syst. 373, 37--61 (2019; Zbl 1423.03259) Full Text: DOI OpenURL References: [1] Bahls, P.; Cole, J.; Galatos, N.; Jipsen, P.; Tsinakis, C., Cancellative residuated lattices, Algebra Univers., 50, 83-106 (2003) · Zbl 1092.06012 [2] Blount, K.; Tsinakis, C., The structure of residuated lattices, Int. J. Algebra Comput., 13, 437-461 (2003) · Zbl 1048.06010 [3] Bosbach, B., Residuation groupoids, Results Math., 5, 107-122 (1982) · Zbl 0513.06007 [4] Botur, M.; Dvurečenskij, A., State-morphism algebras – general approach, Fuzzy Sets Syst., 218, 90-102 (2013) · Zbl 1314.06013 [5] Buşneag, D.; Piciu, D., On the lattice of filters of a pseudo BL-algebra, J. Mult.-Valued Log. Soft Comput., 10, 1-32 (2006) [6] Ciungu, L. C., Classes of residuated lattices, An. Univ. Craiova, Mat. Comp. Sci. Ser., 33, 189-207 (2006) · Zbl 1119.03343 [7] Ciungu, L. C., Bosbach and Riečan states on residuated lattices, J. Appl. Funct. Anal., 3, 175-188 (2008) · Zbl 1170.03030 [8] Ciungu, L. C., Directly indecomposable residuated lattices, Iran. J. Fuzzy Syst., 6, 2, 7-18 (2009) · Zbl 1183.03066 [9] Ciungu, L. C.; Dvurečenskij, A.; Hyčko, M., State BL-algebras, Soft Comput., 15, 619-634 (2011) · Zbl 1251.03096 [10] Constantinescu, N. M., On pseudo-BL algebras with internal state, Soft Comput., 16, 1915-1922 (2012) · Zbl 1291.03116 [11] Constantinescu, N. M., State filters on fuzzy structures with internal states, Soft Comput., 18, 1841-1852 (2014) · Zbl 1331.03043 [12] Denecke, K.; Erné, M.; Wismath, S. L., Galois Connections and Applications, Vol. 565 (2013), Springer Science & Business Media [13] Di Nola, A.; Georgescu, G.; Iorgulescu, A., Pseudo BL-algebras, part I, Mult. Valued Log., 8, 673-714 (2002) · Zbl 1028.06007 [14] Di Nola, A.; Dvurečenskij, A., State-morphism MV-algebras, Ann. Pure Appl. Logic, 161, 161-173 (2009) · Zbl 1186.06007 [15] Di Nola, A.; Dvurečenskij, A., On some classes of state morphism MV-algebras, Math. Slovaca, 59, 517-534 (2009) · Zbl 1212.06028 [16] Di Nola, A.; Dvurečenskij, A.; Lettieri, A., On varieties of MV-algebras with internal states, Int. J. Approx. Reason., 51, 680-694 (2010) · Zbl 1213.06006 [17] Dvurečenskij, A., States on pseudo MV-algebras, Stud. Log., 68, 301-327 (2001) · Zbl 0999.06011 [18] Dvurečenskij, A.; Rachůnek, J., On Riečan and Bosbach states for bounded non-commutative Rℓ-monoids, Math. Slovaca, 56, 487-500 (2006) · Zbl 1141.06005 [19] Dvurečenskij, A.; Kowalski, T.; Montagna, F., State morphism MV-algebras, Int. J. Approx. Reason., 52, 1215-1228 (2011) · Zbl 1251.06001 [20] Dvurečenskij, A.; Rachůnek, J.; Šalounová, D., State operators on generalizations of fuzzy structures, Fuzzy Sets Syst., 187, 58-76 (2012) · Zbl 1266.03071 [21] Flaminio, T.; Montagna, F., An algebraic approach to states on MV-algebras, (Novák, V., Fuzzy Logic 2, Proceedings of the 5th EUSFLAT Conference. Fuzzy Logic 2, Proceedings of the 5th EUSFLAT Conference, September 11-14, Ostrava 2 (2007)), 201-206 [22] Flaminio, T.; Montagna, F., MV-algebras with internal states and probabilistic fuzzy logic, Int. J. Approx. Reason., 50, 138-152 (2009) · Zbl 1185.06007 [23] Flondor, P.; Georgescu, G.; Iorgulescu, A., Pseudo t-norms and pseudo BL-algebras, Soft Comput., 5, 355-371 (2001) · Zbl 0995.03048 [24] Galatos, N.; Jipsen, P.; Kowalski, T.; Ono, H., Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Studies in Logic and the Foundations of Mathematics (2007), Elsevier: Elsevier Amsterdam [25] Georgescu, G.; Ioregulescu, A., Pseudo-MV algebras, Mult. Valued Log., 6, 95-135 (2001) [26] Georgescu, G., Bosbach states on fuzzy structures, Soft Comput., 8, 217-230 (2004) · Zbl 1081.06012 [27] Gierz, G.; Hofmann, K.; Keimel, K.; Lawson, J.; Mislove, M.; Scott, D., Continuous Lattices and Domains (2003), Cambridge University Press: Cambridge University Press Cambridge [28] Grätzer, G., Lattice Theory (1979), W. H. Freeman and Company: W. H. Freeman and Company San Francisco · Zbl 0385.06015 [29] Hájek, P., Metamathematics of Fuzzy Logic, Trends in Logic Studia Logica Library, vol. 4 (1998), Kluwer: Kluwer Dordrecht · Zbl 0937.03030 [30] Haveshki, M.; Mohamadhasani, M., Extended filters in bounded commutative Rℓ-monoids, Soft Comput., 16, 2165-2173 (2012) · Zbl 1288.03043 [31] Iorgulescu, A., Algebras of Logic as BCK Algebras, Academy of Economic Studies (2008), Press (Editura ASE): Press (Editura ASE) Bucharest · Zbl 1219.06019 [32] He, P.; Xin, X.; Yang, Y., On state residuated lattices, Soft Comput., 19, 2083-2094 (2015) · Zbl 1364.06003 [33] Jipsen, P.; Tsinakis, C., A survey of residuated lattices, (Martinez, J., Ordered Algebraic Structures (2002), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 19-56 · Zbl 1070.06005 [34] Krull, W., Axiomatische Begrundung der allgemeinen Idealtheorie, (Sitzungsberichte der Physikalisch Medizinischen Societat der Erlangen, vol. 56 (1924)), 47-63 · JFM 50.0073.02 [35] Kondo, M., Characterization of extended filters in residuated lattices, Soft Comput., 18, 427-432 (2014) · Zbl 1386.03073 [36] Kondo, M., Generalized state operators on residuated lattices, Soft Comput., 1-9 (2016) [37] Kôpka, F.; Chovanec, F., \(D\)-posets, Math. Slovaca, 44, 21-34 (1994) · Zbl 0789.03048 [38] Kowalski, T.; Ono, H., Residuated lattices: an algebraic glimpse at logics without contraction, Jpn. Adv. Inst. Sci. Technol. (2001) [39] Kühr, J., Pseudo BL-algebras and DR-monoids, Math. Bohem., 128, 199-208 (2003) · Zbl 1024.06005 [40] Mundici, D., Averaging the truth value in Łukasiewicz sentential logic, Stud. Log., 55, 113-127 (1995) · Zbl 0836.03016 [41] Piciu, D., Algebras of Fuzzy Logic (2007), Ed. Universitaria: Ed. Universitaria Craiova [42] Rachůnek, J.; Šalounová, D., Filter theory of bounded residuated lattice ordered monoids, J. Mult.-Valued Log. Soft Comput., 16, 449-465 (2010) · Zbl 1236.03057 [43] Riečan, B., On the probability on BL-algebras, Acta Math., 4, 3-13 (2002) [44] Stanely, B.; Sankappanavar, H. P., A Course in Universal Algebra, Graduate Texts in Mathematics (1981), Springer-Verlag [45] Turunen, E., Mathematics Behind Fuzzy Logic, Advances in Soft Computing (1999), Physica-Verlag: Physica-Verlag Heidelberg [46] Van Gasse, B.; Deschrijver, G.; Cornelis, C.; Kerre, E. E., Filters of residuated lattices and triangle algebras, Inf. Sci., 180, 16, 3006-3020 (2010) · Zbl 1206.03058 [47] Ward, M.; Dilworth, R. P., Residuated lattices, Trans. Am. Math. Soc., 45, 335-354 (1939) · JFM 65.0084.01 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.