×

\(q\)-congruences, with applications to supercongruences and the cyclic sieving phenomenon. (English) Zbl 1423.11043


MSC:

11B65 Binomial coefficients; factorials; \(q\)-identities
05A30 \(q\)-calculus and related topics
11A07 Congruences; primitive roots; residue systems
11B83 Special sequences and polynomials

Citations:

Zbl 1118.14043
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Adamczewski, B.; Bell, J. P.; Delaygue, E.; Jouhet, F., Congruences modulo cyclotomic polynomials and algebraic independence for \(q\)-series, Sém. Lothar. Combin., 78B, 12, (2017) · Zbl 1405.11019
[2] Almkvist, G.; van Straten, D.; Zudilin, W., Generalizations of Clausen’s formula and algebraic transformations of Calabi-Yau differential equations, Proc. Edinb. Math. Soc. (2), 54, 2, 273-295, (2011) · Zbl 1223.33007
[3] Almkvist, G.; Zudilin, W., Mirror Symmetry. V, AMS/IP Studies in Advanced Mathematics, Differential equations, mirror maps and zeta values, 481-515, (2006), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1118.14043
[4] Amdeberhan, T.; Tauraso, R., Supercongruences for the Almkvist-Zudilin numbers, Acta Arith., 173, 3, 255-268, (2016) · Zbl 1360.11004
[5] Andrews, G. E., Euler’s “exemplum memorabile inductionis fallacis” and \(q\)-trinomial coefficients, J. Amer. Math. Soc., 3, 3, 653-669, (1990) · Zbl 0716.11012
[6] Andrews, G. E., Analytic Number Theory Progress in Mathematics \(, 85, q\)-trinomial coefficients and Rogers–Ramanujan type identities, 1-11, (1990), Birkhäuser: Birkhäuser, Boston, MA
[7] Andrews, G. E., The Rademacher Legacy to Mathematics Contemporary Mathematics, 166, Schur’s theorem, Capparelli’s conjecture and \(q\)-trinomial coefficients, 141-154, (1994), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 0811.05001
[8] Andrews, G. E.\(, q\)-analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher, Discrete Math., 204, 1-3, 15-25, (1999) · Zbl 0937.05014
[9] Andrews, G. E., Fibonacci numbers and the Rogers-Ramanujan identities, Fibonacci Quart., 42, 1, 3-19, (2004) · Zbl 1055.11011
[10] Andrews, G. E.; Baxter, R. J., Lattice gas generalization of the hard hexagon model. III.\( q\)-trinomial coefficients, J. Statist. Phys., 47, 3-4, 297-330, (1987) · Zbl 0638.10009
[11] Apéry, R., Irrationalité de \(\zeta(2)\) et \(\zeta(3),\) Astérisque, 61, 11-13, (1979) · Zbl 0401.10049
[12] Beukers, F., Some congruences for the Apéry numbers, J. Number Theory, 21, 2, 141-155, (1985) · Zbl 0571.10008
[13] Beukers, F., Another congruence for the Apéry numbers, J. Number Theory, 25, 2, 201-210, (1987) · Zbl 0614.10011
[14] Brun, V.; Stubban, J. O.; Fjeldstad, J. E.; Lyche, R. Tambs; Aubert, K. E.; Ljunggren, W.; Jacobsthal, E., Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, On the divisibility of the difference between two binomial coefficients, 42-54, (1952), Johan Grundt Tanums Forlag: Johan Grundt Tanums Forlag, Oslo · Zbl 0048.27204
[15] Cai, T.; García-Pulgarín, G., Two Wolstenholme’s type theorems on \(q\)-binomial coefficients, Rev. Colombiana Mat., 35, 2, 61-65, (2001) · Zbl 1046.11002
[16] Carlitz, L., Fibonacci notes. III.\( q\)-Fibonacci numbers, Fibonacci Quart., 12, 317-322, (1974) · Zbl 0292.10010
[17] Carlitz, L., Fibonacci notes. IV.\( q\)-Fibonacci polynomials, Fibonacci Quart., 13, 97-102, (1975) · Zbl 0298.10010
[18] Chan, H.-C., An Invitation to \(q\)-Series, (2011), World Scientific Publishing Co. Pte. Ltd.: World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ
[19] Chowla, S.; Cowles, J.; Cowles, M., Congruence properties of Apéry numbers, J. Number Theory, 12, 2, 188-190, (1980) · Zbl 0428.10008
[20] Cigler, J.\(, q\)-Fibonacci polynomials, Fibonacci Quart., 41, 1, 31-40, (2003) · Zbl 1027.11011
[21] Cigler, J.\(, q\)-Fibonacci polynomials and the Rogers-Ramanujan identities, Ann. Comb., 8, 3, 269-285, (2004) · Zbl 1161.11308
[22] J. Cigler, Some divisibility properties of \(q\)-Fibonacci numbers, preprint (2016); arXiv:1604.07977.
[23] Clark, W. E.\(, q\)-analogue of a binomial coefficient congruence, Internat. J. Math. Math. Sci., 18, 1, 197-200, (1995) · Zbl 0816.05009
[24] Cohn, H., Projective geometry over \(F_1\) and the Gaussian binomial coefficients, Amer. Math. Monthly, 111, 6, 487-495, (2004) · Zbl 1060.05013
[25] Cooper, S., Sporadic sequences, modular forms and new series for \(1 / \pi,\) Ramanujan J., 29, 1-3, 163-183, (2012) · Zbl 1336.11031
[26] M. J. Coster, Supercongruences, Ph.D. thesis, University of Leiden (1988).
[27] Deutsch, E.; Sagan, B. E., Congruences for Catalan and Motzkin numbers and related sequences, J. Number Theory, 117, 1, 191-215, (2006) · Zbl 1163.11310
[28] Du, B.-S.; Huang, S.-S.; Li, M.-C., Generalized Fermat, double Fermat and Newton sequences, J. Number Theory, 98, 1, 172-183, (2003) · Zbl 1090.11017
[29] Gessel, I., A noncommutative generalization and \(q\)-analog of the Lagrange inversion formula, Trans. Amer. Math. Soc., 257, 2, 455-482, (1980) · Zbl 0459.05014
[30] Gessel, I., Some congruences for Apéry numbers, J. Number Theory, 14, 3, 362-368, (1982) · Zbl 0482.10003
[31] Gillespie, F. S., A generalization of Fermat’s little theorem, Fibonacci Quart., 27, 2, 109-115, (1989) · Zbl 0672.10010
[32] V. J. W. Guo and W. Zudilin, A \(q\)-microscope for supercongruences, preprint (2018); arXiv:1803.01830. · Zbl 1464.11028
[33] Ireland, K.; Rosen, M., A Classical Introduction to Modern Number Theory, 84, (1990), Springer-Verlag: Springer-Verlag, New York · Zbl 0712.11001
[34] Jezierski, J.; Marzantowicz, W., Homotopy Methods in Topological Fixed and Periodic Points Theory, 3, (2006), Springer: Springer, Dordrecht · Zbl 1085.55001
[35] Krattenthaler, C.; Rivoal, T.; Zudilin, W., Séries hypergéométriques basiques \(, q\)-analogues des valeurs de la fonction zêta et séries d’Eisenstein, J. Inst. Math. Jussieu, 5, 1, 53-79, (2006) · Zbl 1089.11038
[36] Malik, A.; Straub, A., Divisibility properties of sporadic Apéry-like numbers, Res. Number Theory, 2, 26, (2016) · Zbl 1404.11015
[37] Mimura, Y., Congruence properties of Apéry numbers, J. Number Theory, 16, 1, 138-146, (1983) · Zbl 0504.10007
[38] Minton, G. T., Linear recurrence sequences satisfying congruence conditions, Proc. Amer. Math. Soc., 142, 7, 2337-2352, (2014) · Zbl 1373.11016
[39] Osburn, R.; Sahu, B., A supercongruence for generalized Domb numbers, Funct. Approx. Comment. Math., 48, part 1, 29-36, (2013) · Zbl 1337.11001
[40] Osburn, R.; Sahu, B.; Straub, A., Supercongruences for sporadic sequences, Proc. Edinb. Math. Soc. (2), 59, 2, 503-518, (2016) · Zbl 1411.11005
[41] Pan, H., Arithmetic properties of \(q\)-Fibonacci numbers and \(q\)-Pell numbers, Discrete Math., 306, 17, 2118-2127, (2006) · Zbl 1220.11022
[42] H. Pan \(, q\)-analogue of Gauss’ divisibility theorem, preprint (2008); arXiv:0804.0834.
[43] Pan, H., Congruences for \(q\)-Lucas numbers, Electron. J. Combin., 20, 2, 8, (2013) · Zbl 1267.05036
[44] Reiner, V.; Stanton, D.; White, D., The cyclic sieving phenomenon, J. Combin. Theory Ser. A, 108, 1, 17-50, (2004) · Zbl 1052.05068
[45] Robert, A. M., A Course in \(p\)-Adic Analysis, 198, (2000), Springer-Verlag: Springer-Verlag, New York · Zbl 0947.11035
[46] Sagan, B. E., Surveys in Combinatorics 2011, 392, The cyclic sieving phenomenon: A survey, 183-233, (2011), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1233.05028
[47] Schur, I., Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche, Berl. Ber., 1917, 302-321, (1917) · JFM 46.0201.01
[48] Shi, L.-L.; Pan, H., A \(q\)-analogue of Wolstenholme’s harmonic series congruence, Amer. Math. Monthly, 114, 6, 529-531, (2007) · Zbl 1193.11018
[49] Slavin, K. R.\(, q\)-binomials and the greatest common divisor, Integers, 8, A05, (2008) · Zbl 1174.11024
[50] Stanley, R. P., Enumerative Combinatorics: Vol. 1, 49, (1997), Cambridge University Press: Cambridge University Press, Cambridge
[51] Stanley, R. P., Enumerative Combinatorics: Vol. 2, 62, (1999), Cambridge University Press: Cambridge University Press, Cambridge
[52] Steinlein, H., Fermat’s Little Theorem and Gauss Congruence: Matrix versions and cyclic permutationsm, Amer. Math. Monthly, 124, 6, 548-553, (2017) · Zbl 1391.11006
[53] Straub, A., A \(q\)-analog of Ljunggren’s binomial congruence, Proc. 23rd Int. Conf. on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 897-902, (2011) · Zbl 1355.05053
[54] Straub, A., Supercongruences for polynomial analogs of the Apéry numbers, Proc. Amer. Math. Soc., 147, 1023-1036, (2019) · Zbl 1442.11039
[55] Warnaar, S. O., Refined \(q\)-trinomial coefficients and character identities, Proceedings of the Baxter Revolution in Mathematical Physics, 102, 1065-1081, (2001) · Zbl 1135.33304
[56] Warnaar, S. O., The generalized Borwein conjecture. II. Refined \(q\)-trinomial coefficients, Discrete Math., 272, 2-3, 215-258, (2003) · Zbl 1030.05004
[57] Zagier, D., Groups and Symmetries, 47, Integral solutions of Apéry-like recurrence equations, 349-366, (2009), American Mathematical Society: American Mathematical Society, Providence, RI
[58] Zarelua, A. V., On congruences for the traces of powers of some matrices, Proc. Steklov Inst. Math., 263, 1, 78-98, (2008) · Zbl 1243.11021
[59] Zheng, D.-Y., An algebraic identity on \(q\)-Apéry numbers, Discrete Math., 311, 23-24, 2708-2710, (2011) · Zbl 1242.05007
[60] W. Zudilin, Congruences for \(q\)-binomial coefficients, preprint (2019); arXiv:1901.07843.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.