Fast isogeometric boundary element method based on independent field approximation. (English) Zbl 1423.74101

Summary: An isogeometric boundary element method for problems in elasticity is presented, which is based on an independent approximation for the geometry, traction and displacement field. This enables a flexible choice of refinement strategies, permits an efficient evaluation of geometry related information, a mixed collocation scheme which deals with discontinuous tractions along non-smooth boundaries and a significant reduction of the right hand side of the system of equations for common boundary conditions. All these benefits are achieved without any loss of accuracy compared to conventional isogeometric formulations. The system matrices are approximated by means of hierarchical matrices to reduce the computational complexity for large scale analysis. For the required geometrical bisection of the domain, a strategy for the evaluation of bounding boxes containing the supports of NURBS basis functions is presented. The versatility and accuracy of the proposed methodology are demonstrated by convergence studies showing optimal rates and real world examples in two and three dimensions.


74B05 Classical linear elasticity
65D17 Computer-aided design (modeling of curves and surfaces)
65N38 Boundary element methods for boundary value problems involving PDEs
74S15 Boundary element methods applied to problems in solid mechanics


Full Text: DOI arXiv


[1] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195, (2005) · Zbl 1151.74419
[2] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric analysis: toward integration of CAD and FEA, (2009), John Wiley & Sons · Zbl 1378.65009
[3] Thurston, W. P., Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.), 6, 3, 357-381, (1982) · Zbl 0496.57005
[4] Thurston, W. P.; Levy, S., Three-dimensional geometry and topology, vol. 35, (1997), Princeton University Press
[5] Arnold, D. N.; Wendland, W. L., On the asymptotic convergence of collocation methods, Math. Comp., 41, 164, 349-381, (1983) · Zbl 0541.65075
[6] Arnold, D. N.; Wendland, W. L., The convergence of spline collocation for strongly elliptic-equations on curves, Numer. Math., 47, 3, 317-341, (1985) · Zbl 0592.65077
[7] Saranen, J.; Wendland, W. L., On the asymptotic convergence of collocation methods with spline functions of even degree, Math. Comp., 45, 171, 91-108, (1985) · Zbl 0623.65145
[8] Costabel, M.; Stephan, E. P., On the convergence of collocation methods for boundary integral-equations on polygons, Math. Comp., 49, 180, 461-478, (1987) · Zbl 0636.65122
[9] Saranen, J., The convergence of even degree spline collocation solution for potential problems in smooth domains of the plane, Numer. Math., 53, 5, 499-512, (1988) · Zbl 0628.65107
[10] Arnold, D. N.; Saranen, J., On the asymptotic convergence of spline collocation methods for partial-differential equations, SIAM J. Numer. Anal., 21, 3, 459-472, (1984) · Zbl 0542.65069
[11] Schneider, R., Stability of a spline collocation method for strongly elliptic multidimensional singular integral-equations, Numer. Math., 58, 8, 855-873, (1991) · Zbl 0724.65134
[12] Costabel, M.; McLean, W., Spline collocation for strongly elliptic-equations on the torus, Numer. Math., 62, 4, 511-538, (1992) · Zbl 0767.65079
[13] Ligget, J. A.; Salmon, J. R., Cubic spline boundary elements, Internat. J. Numer. Methods Engrg., 17, 4, 543-556, (1981) · Zbl 0466.76093
[14] Yu, M.; Kuffel, E., Spline element for boundary element method, IEEE Trans. Magn., 30, 5, 2905-2907, (1994)
[15] Cabral, J.; Wrobel, L. C.; Brebbia, C. A., A BEM formulation using B-splines: I — uniform blending functions, Eng. Anal. Bound. Elem., 7, 3, 136-144, (1990)
[16] Cabral, J.; Wrobel, L. C.; Brebbia, C. A., A BEM formulation using B-splines: II — multiple knots and nonuniform blending functions, Eng. Anal. Bound. Elem., 8, 1, 51-55, (1991)
[17] Qi, S.; Yang, Q., Spline boundary element method for coplanar waveguides, IEEE Antennas and Propagation Soc. AP S Internat. Symp. (Digest), 3, 1704-1707, (1993)
[18] Schlemmer, E.; Rucker, W. M.; Richter, K. R., Boundary element computations of 3D stationary and time-dependent problems using Bézier-spline elements, IEEE Trans. Magn., 30, 5, 2901-2904, (1994)
[19] Ushatov, R.; Power, H.; Rêgo Silva, J. J., Uniform bicubic B-splines applied to boundary element formulation for 3-D scalar problems, Eng. Anal. Bound. Elem., 13, 4, 371-381, (1994)
[20] Turco, E.; Aristodemo, M., A three-dimensional B-spline boundary element, Comput. Methods Appl. Mech. Engrg., 155, 1-2, 119-128, (1998) · Zbl 0960.74074
[21] Maniar, H. D., A three dimensional higher-order panel method based on B-splines, (1995), Massachusetts Institute of Technology, (Ph.D. thesis)
[22] Valle, L.; Rivas, F.; F. Cátedra, M., Combining the moment method with geometrical modeling by NURBS surfaces and Bézier patches, IEEE Trans. Antennas and Propagation, 42, 3, 373-381, (1994)
[23] Rivas, F.; Valle, L.; F. Cátedra, M., A moment method formulation for the analysis of wire antennas attached to arbitrary conducting bodies defined by parametric surfaces, Appl. Comput. Electromagn. Soc. J., 11, 2, 32-39, (1996)
[24] Politis, C.; Ginnis, A. I.; Kaklis, P. D.; Belibassakis, K.; Feurer, C., An isogeometric BEM for exterior potential-flow problems in the plane, (2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, SPM’09, (2009), ACM), 349-354
[25] Gu, J.; Zhang, J.; Li, G., Isogeometric analysis in BIE for 3-D potential problem, Eng. Anal. Bound. Elem., 36, 5, 858-865, (2012) · Zbl 1352.65585
[26] Li, K.; Qian, X., Isogeometric analysis and shape optimization via boundary integral, Comput. Aided Des., 43, 11, 1427-1437, (2011)
[27] Simpson, R. N.; Bordas, S. P.A.; Trevelyan, J.; Rabczuk, T., A two-dimensional isogeometric boundary element method for elastostatic analysis, Comput. Methods Appl. Mech. Engrg., 209-212, 87-100, (2012) · Zbl 1243.74193
[28] Beer, G.; Marussig, B.; Dünser, C., Isogeometric boundary element method for the simulation of underground excavations, Géotech. Lett., 3, 108-111, (2013)
[29] Scott, M. A.; Simpson, R. N.; Evans, J. A.; Lipton, S.; Bordas, S. P.A.; Hughes, T. J.R.; Sederberg, T. W., Isogeometric boundary element analysis using unstructured T-splines, Comput. Methods Appl. Mech. Engrg., 254, 197-221, (2013) · Zbl 1297.74156
[30] Marussig, B.; Beer, G.; Dünser, C., Isogeometric boundary element method for the simulation in tunneling, Appl. Mech. Mater., 553, 495-500, (2014)
[31] Heltai, L.; Arroyo, M.; DeSimone, A., Nonsingular isogeometric boundary element method for Stokes flows in 3D, Comput. Methods Appl. Mech. Engrg., 268, 514-539, (2014) · Zbl 1295.76022
[32] Simpson, R. N.; Scott, M. A.; Taus, M.; Thomas, D. C.; Lian, H., Acoustic isogeometric boundary element analysis, Comput. Methods Appl. Mech. Engrg., 269, 265-290, (2014) · Zbl 1296.65175
[33] Vazquez, R.; Buffa, A.; Di Rienzo, L., NURBS-based BEM implementation of high-order surface impedance boundary conditions, IEEE Trans. Magn., 48, 12, 4757-4766, (2012)
[34] Peake, M. J.; Trevelyan, J.; Coates, G., Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems, Comput. Methods Appl. Mech. Engrg., 259, 93-102, (2013) · Zbl 1286.65176
[35] Rokhlin, V., Rapid solution of integral equations of classical potential theory, J. Comput. Phys., 60, 2, 187-207, (1985) · Zbl 0629.65122
[36] Hackbusch, W., A sparse matrix arithmetic based on \(\mathcal{H}\)-matrices, Computing, 62, 89-108, (1999) · Zbl 0927.65063
[37] Beylkin, G.; Coifman, R.; Rokhlin, V., Fast wavelet transforms and numerical algorithms, Comm. Pure Appl. Math., 44, 2, 141-183, (1991) · Zbl 0722.65022
[38] Phillips, J. R.; White, J., A precorrected-FFT method for capacitance extraction of complicated 3-D structures, (ICCAD’94: Proceedings of the 1994 IEEE/ACM International Conference on Computer-aided Design, (1994), IEEE Computer Society Press), 268-271
[39] González, I.; Gutiérrez, O.; De Saez Adana, F.; Cátedra, M. F., Application of multilevel fast multipole method to the analysis of the scattering of complex bodies modeled by NURBS surfaces, (Antennas and Propagation Society International Symposium 2006, (2006), IEEE), 1887-1890
[40] Harbrecht, H.; Randrianarivony, M., From computer aided design to wavelet BEM, Comput. Vis. Sci., 13, 2, 69-82, (2010) · Zbl 1213.65146
[41] Harbrecht, H.; Peters, M., Comparison of fast boundary element methods on parametric surfaces, Comput. Methods Appl. Mech. Engrg., 261-262, 0, 39-55, (2013) · Zbl 1286.65175
[42] Takahashi, T.; Matsumoto, T., An application of fast multipole method to isogeometric boundary element method for Laplace equation in two dimensions, Eng. Anal. Bound. Elem., 36, 12, 1766-1775, (2012) · Zbl 1351.74138
[43] Kupradze, V. D.; Gegelia, T. G.; Basheleishvili, M. O.; Burchuladze, T. V., Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity, (Applied Mathematics and Mechanics, vol. 25, (1979), North-Holland Publishing Company)
[44] Steinbach, O., Numerical approximation methods for elliptic boundary value problems, (2008), Springer Science+Business Media
[45] Hsiao, G. C.; Wendland, W. L., Boundary integral equations, (Applied Mathematical Sciences, vol. 164, (2008), Springer-Verlag Berlin, Heidelberg) · Zbl 1157.65066
[46] Beer, G.; Smith, I. M.; Dünser, C., The boundary element method with programming, (2008), Springer Wien New York
[47] Farin, G., Curves and surfaces for CAGD: A practical guide, (2002), Morgan Kaufmann
[48] Piegl, L.; Tiller, W., The NURBS book, monographs in visual communication, (1997), Springer-Verlag Berlin Heidelberg
[49] Zechner, J.; Beer, G., A fast elasto-plastic formulation with hierarchical matrices and the boundary element method, Comput. Mech., 51, 4, 443-453, (2013) · Zbl 1312.74059
[50] Mantic, V., A new formula for the C-matrix in the somigliana identity, J. Elasticity, 33, 191-201, (1993) · Zbl 0801.73015
[51] Börm, S.; Grasedyck, L.; Hackbusch, W., Introduction to hierarchical matrices with applications, Eng. Anal. Bound. Elem., 27, 5, 405-422, (2003) · Zbl 1035.65042
[52] Bebendorf, M., Approximation of boundary element matrices, Numer. Math., 86, 565-589, (2000) · Zbl 0966.65094
[53] Bebendorf, M.; Grzhibovskis, R., Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation, Math. Methods Appl. Sci., 29, 1721-1747, (2006) · Zbl 1110.74054
[54] Hackbusch, W., Hierarchische matrizen, (2009), Springer Berlin, Heidelberg · Zbl 1180.65004
[55] Grasedyck, L., Adaptive recompression of \(\mathcal{H}\)-matrices for BEM, Computing, 74, 205-223, (2005) · Zbl 1070.65028
[56] Bebendorf, M., Hierarchical matrices: a means to efficiently solve elliptic boundary value problems, (Lecture Notes in Computational Science and Engineering, LNCSE, vol. 63, (2008), Springer-Verlag) · Zbl 1151.65090
[57] Grasedyck, L.; Hackbusch, W., Construction and arithmetics of \(\mathcal{H}\)-matrices, Computing, 70, 295-334, (2003) · Zbl 1030.65033
[58] Zechner, J., A fast boundary element method with hierarchical matrices for elastostatics and plasticity, (2012), Graz University of Technology, Institute for Structural Analysis, (Ph.D. thesis)
[59] S. Börm, L. Grasedyck, HLib — a library for \(\mathcal{H}\)- and \(\mathcal{H}^2\)-matrices, 1999, URL http://www.hlib.org.
[60] Sloan, I. H., Error analysis of boundary integral methods, Acta Numer., 1, 287-339, (1992) · Zbl 0765.65109
[61] Atkinson, K. E., The numerical solution of integral equations of the second kind, (Cambridge Monographs on Applied and Computational Mathematics, vol. 4, (1997), Cambridge University Press) · Zbl 0899.65077
[62] Sauter, S. A.; Schwab, C., Boundary element methods, (Springer Series in Computational Mathematics, vol. 39, (2011), Springer Berlin, Heidelberg) · Zbl 1215.65183
[63] Duffy, M. G., Quadrature over a pyramid or cube of integrands with a singularity at a vertex, SIAM J. Numer. Anal., 19, 6, 1260-1262, (1982) · Zbl 0493.65011
[64] Guiggiani, M.; Gigante, A., A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method, Trans. ASME, J. Appl. Mech., 57, 4, 906-915, (1990) · Zbl 0735.73084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.