×

zbMATH — the first resource for mathematics

Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. (English) Zbl 1423.74768
Summary: The focus of this paper is on interpolation schemes for fictitious domain and topology optimization approaches with structures undergoing large displacements. Numerical instability in the finite element simulations can often be observed, due to excessive distortion in low stiffness regions. A new energy interpolation scheme is proposed in order to stabilize the numerical simulations. The elastic energy density in the solid and void regions is interpolated using the elastic energy densities for large and small deformation theory, respectively. The performance of the proposed method is demonstrated for a challenging test geometry as well as for topology optimization of minimum compliance and compliant mechanisms. The effect of combining the proposed interpolation scheme with different hyperelastic material models is investigated as well. Numerical results show that the proposed approach alleviates the problems in the low stiffness regions and for the simulated cases, results in stable topology optimization of structures undergoing large displacements.

MSC:
74P15 Topological methods for optimization problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Software:
FEAPpv
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ramiere, I.; Angot, P.; Belliard, M., A fictitious domain approach with spread interface for elliptic problems with general boundary conditions, Comput. Methods Appl. Mech. Eng., 196, 766-781, (2007) · Zbl 1121.65364
[2] Düster, A.; Parvizian, J.; Yang, Z.; Rank, E., The finite cell method for three-dimensional problems of solid mechanics, Comput. Methods Appl. Mech. Eng., 197, 3768-3782, (2008) · Zbl 1194.74517
[3] Schillinger, D.; Düster, A.; Rank, E., The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics, Int. J. Numer. Methods Eng., 89, 1171-1202, (2012) · Zbl 1242.74161
[4] Bendsøe, M. P.; Sigmund, O., Topology optimization/theory, methods and applications, (2003), Springer Berlin · Zbl 1059.74001
[5] Haber, R. B.; Jog, C. S.; Bendsøe, M. P., A new approach to variable-topology shape design using a constraint on perimeter, Struct. Optim., 11, 1-12, (1996)
[6] Sigmund, O.; Torquato, S., Design of materials with extreme thermal expansion using a three-phase topology optimization method, J. Mech. Phys. Solids, 45, 1037-1067, (1997)
[7] Bourdin, B., Filters in topology optimization, Int. J. Numer. Methods Eng., 55, 2143-2158, (2001) · Zbl 0971.74062
[8] Bruns, T. E.; Tortorelli, D. A., Topology optimization of non-linear elastic structures and compliant mechanisms, Comput. Methods Appl. Mech. Eng., 190, 3443-3459, (2001) · Zbl 1014.74057
[9] Sigmund, O., Morphology-based black and white filters for topology optimization, Struct. Multidiscip. Optim., 33, 401-424, (2007)
[10] Guest, J. K., Topology optimization with multiple phase projection, Comput. Methods Appl. Mech. Eng., 199, 123-135, (2009) · Zbl 1231.74360
[11] Sigmund, O., Manufacturing tolerant topology optimization, Acta Mech. Sinica, 25, 227-239, (2009) · Zbl 1270.74165
[12] Wang, F.; Lazarov, B. S.; Sigmund, O., On projection methods, convergence and robust formulations in topology optimization, Struct. Multidiscip. Optim., 43, 767-784, (2011) · Zbl 1274.74409
[13] Buhl, T.; Pedersen, C. B.W.; Sigmund, O., Stiffness design of geometrically nonlinear structures using topology optimization, Struct. Multidiscip. Optim., 19, 93-104, (2000)
[14] Pedersen, C. B.W.; Buhl, T.; Sigmund, O., Topology synthesis of large-displacement compliant mechanisms, Int. J. Numer. Methods Eng., 50, 2683-2705, (2001) · Zbl 0988.74055
[15] Bruns, T. E.; Tortorelli, D. A., An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms, Int. J. Numer. Methods Eng., 57, 1413-1430, (2003) · Zbl 1062.74589
[16] Yoon, G. H.; Kim, Y. Y., Element connectivity parameterization for topology optimization of geometrically nonlinear structures, Int. J. Solids Struct., 42, 1983-2009, (2005) · Zbl 1111.74035
[17] Lazarov, B. S.; Schevenels, M.; Sigmund, O., Robust design of large-displacement compliant mechanisms, Mech. Sci., 2, 175-182, (2011)
[18] Querin, O.; Steven, G.; Xie, Y., Evolutionary structural optimisation (ESO) using a bidirectional algorithm, Eng. Comput., 15, 1031-1048, (1998) · Zbl 0938.74056
[19] Wang, M. Y.; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput. Methods Appl.Mech. Eng., 192, 227-246, (2003) · Zbl 1083.74573
[20] Allaire, G.; Jouve, F.; Toader, A.-M., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 363-393, (2004) · Zbl 1136.74368
[21] N.P. Van Dijk, Pushing the boundaries: level-set methods and geometrical nonlinearities in structural topology optimization (Ph.D. thesis), Delft University of Technology, 2012.
[22] Klarbring, A.; Strömberg, N., Topology optimization of hyperelastic bodies including non-zero prescribed displacements, Struct. Multidiscip. Optim., 47, 37-48, (2013) · Zbl 1274.74351
[23] Lahuerta, R.; Simões, E.; Campello, E.; Pimenta, P.; Silva, E., Towards the stabilization of the low density elements in topology optimization with large deformation, Comput. Mech., 1-19, (2013)
[24] Sigmund, O.; Maute, K., Topology optimization approaches, Struct. Multidiscip. Optim., 48, 1031-1055, (2013)
[25] Zhou, M.; Rozvany, G., The COC algorithm. part II: topological, geometrical and generalized shape optimization, Comput. Methods Appl. Mech. Eng., 89, 309-336, (1991)
[26] Bendsøe, M. P.; Sigmund, O., Material interpolation schemes in topology optimization, Arch. Appl. Mech., 69, 635-654, (1999) · Zbl 0957.74037
[27] J.M. Pajot, Topology optimization of geometrically nonlinear structures including thermo-mechanical coupling (Ph.D. thesis), University of Colorado at Boulder, 2006.
[28] Zienkiewicz, O. C.; Taylor, R. L., The finite element method for solid and structural mechanics, (2005), Elsevier Butterworth-Heinemann Amsterdam, Boston · Zbl 1084.74001
[29] Svanberg, K., The method of moving asymptotes - a new method for structural optimization, Int. J. Numer. Methods Eng., 24, 359-373, (1987) · Zbl 0602.73091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.