×

zbMATH — the first resource for mathematics

Phase field modeling of fracture in multi-physics problems. I: Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. (English) Zbl 1423.74838
Summary: This work presents a generalization of recently developed continuum phase field models for brittle fracture towards fully coupled thermo-mechanical and multi-physics problems at large strains. It outlines a rigorous geometric approach to the diffusive crack modeling based on the introduction of a balance of regularized crack surface, governed by a crack phase field. The regularized crack surface functional is based on a crack surface density function, that describes the macroscopic crack surface in the bulk material per unit of the reference volume. The approach overcomes difficulties associated with the computational realization of sharp crack discontinuities, in particular when it comes to complex crack topologies. The formulation proposed is essentially a gradient damage theory, however, equipped with critical ingredients rooted in fracture mechanics. A modular concept is outlined for the linking of the diffusive crack modeling with complex multi-field response of the bulk material, where focus is put on the model problem of finite thermo-elasticity. This concerns a generalization of crack driving forces from the energetic definitions towards stress-based criteria, the constitutive modeling of heat conduction across cracks and convective heat exchanges at crack faces based on additional constitutive functions. This is achieved by approximating surface load integrals of the sharp crack approach by distinct volume integrals. We demonstrate the performance of the phase field formulation of fracture at large strains by means of representative numerical examples.
For part II, see [Zbl 1423.74837].

MSC:
74R10 Brittle fracture
74F05 Thermal effects in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 1273-1311, (2010) · Zbl 1202.74014
[2] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 2765-2778, (2010) · Zbl 1231.74022
[3] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.R.; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217-220, 77-95, (2012) · Zbl 1253.74089
[4] Borden, M. J.; Hughes, T. J.R.; Landis, C. M.; Verhoosel, C. V., A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework, Comput. Methods Appl. Mech. Engrg., 273, 100-118, (2014) · Zbl 1296.74098
[5] Verhoosel, C. V.; de Borst, R., A phase-field model for cohesive fracture, Internat. J. Numer. Methods Engrg., 96, 43-62, (2013) · Zbl 1352.74029
[6] Ambrosio, L.; Tortorelli, V. M., Approximation of functionals depending on jumps by elliptic functionals via \(\Gamma\)-convergence, Comm. Pure Appl. Math., 43, 999-1036, (1990) · Zbl 0722.49020
[7] Ambrosio, L.; Tortorelli, V. M., On the approximation of free discontinuity problems, Boll. Unione Mat. Ital., 6-B, 105-123, (1992) · Zbl 0776.49029
[8] Dal Maso, G., An introduction to \(\Gamma\)-convergence, (1993), Birkhäuser · Zbl 0816.49001
[9] Braides, D. P., \(\Gamma\)-convergence for beginners, (2002), Oxford University Press · Zbl 1198.49001
[10] Braides, D. P., Approximation of free discontinuity problems, (1998), Springer Verlag Berlin · Zbl 0909.49001
[11] Hakim, V.; Karma, A., Laws of crack motion and phase-field models of fracture, J. Mech. Phys. Solids, 57, 342-368, (2009) · Zbl 1421.74089
[12] Karma, A.; Kessler, D. A.; Levine, H., Phase-field model of mode III dynamic fracture, Phys. Rev. Lett., 87, 045501, (2001)
[13] Eastgate, L. O.; Sethna, J. P.; Rauscher, M.; Cretegny, T., Fracture in mode I using a conserved phase-field model, Phys. Rev. E, 65, 036117, (2002)
[14] Kuhn, C.; Müller, R., A continuum phase field model for fracture, Eng. Fract. Mech., 77, 3625-3634, (2010)
[15] Francfort, G. A.; Marigo, J. J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 1319-1342, (1998) · Zbl 0966.74060
[16] Bourdin, B.; Francfort, G.; Marigo, J.-J., The variational approach to fracture, (2008), Springer
[17] Capriz, G., Continua with microstructure, (1989), Springer · Zbl 0676.73001
[18] Mariano, P. M., Multifield theories in mechanics of solids, Adv. Appl. Mech., 38, 1-93, (2001)
[19] Frémond, M., Non-smooth thermomechanics, (2002), Springer · Zbl 0990.80001
[20] Miehe, C., A multi-field incremental variational framework for gradient-extended standard dissipative solids, J. Mech. Phys. Solids, 59, 898-923, (2011) · Zbl 1270.74022
[21] Frémond, M.; Nedjar, B., Damage, gradient of damage, and principle of virtual power, Internat. J. Solids Structures, 33, 1083-1103, (1996) · Zbl 0910.73051
[22] Peerlings, R. H.J.; de Borst, R.; Brekelmans, W. A.M.; de Vree, J. H.P., Gradient enhanced damage for quasi-brittle materials, Internat. J. Numer. Methods Engrg., 39, 3391-3403, (1996) · Zbl 0882.73057
[23] Comi, C., Computational modelling of gradient-enhanced damage in quasi-brittle materials, Mech. Cohes.-Frict. Mater., 4, 17-36, (1999)
[24] Comi, C.; Perego, U., Fracture energy based bi-dissipative damage model for concrete, Internat. J. Solids Structures, 38, 6427-6454, (2001) · Zbl 0996.74069
[25] Pham, K.; Amor, H.; Marigo, J.; Maurini, C., Gradient damage models and their use to approximate brittle fracture, Int. J. Damage Mech., 20, 618-652, (2011)
[26] Xu, X. P.; Needleman, A., Void nucleation by inclusion debonding in a crystal matrix, Modelling Simul. Mater. Sci. Eng., 1, 111-132, (1993)
[27] Ortiz, M.; Pandolfi, A., Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, Internat. J. Numer. Methods Engrg., 44, 1267-1282, (1999) · Zbl 0932.74067
[28] Miehe, C.; Gürses, E., A robust algorithm for configurational-force-driven brittle crack propagation with R-adaptive mesh alignment, Internat. J. Numer. Methods Engrg., 72, 127-155, (2007) · Zbl 1194.74444
[29] Gürses, E.; Miehe, C., A computational framework of three-dimensional configurational-force-driven brittle crack propagation, Comput. Methods Appl. Mech. Engrg., 198, 1413-1428, (2009) · Zbl 1227.74070
[30] Simo, J. C.; Oliver, J.; Armero, F., An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids, Comput. Mech., 12, 277-296, (1993) · Zbl 0783.73024
[31] Oliver, J., Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. part 1: fundamentals, Internat. J. Numer. Methods Engrg., 39, 3575-3600, (1996) · Zbl 0888.73018
[32] Oliver, J., Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. part 2: numerical simulation, Internat. J. Numer. Methods Engrg., 39, 3601-3623, (1996) · Zbl 0888.73018
[33] Linder, C.; Armero, F., Finite elements with embedded branching, Finite Elem. Anal. Des., 45, 280-293, (2009)
[34] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 131-150, (1999) · Zbl 0955.74066
[35] Wells, G. N.; Sluys, L. J., A new method for modelling cohesive cracks using finite elements, Internat. J. Numer. Methods Engrg., 50, 2667-2682, (2001) · Zbl 1013.74074
[36] Gasser, T. C.; Holzapfel, G. A., Modeling 3D crack propagation in unreinforced concrete using pufem, Comput. Methods Appl. Mech. Engrg., 194, 2859-2896, (2005) · Zbl 1176.74180
[37] Belytschko, T.; Chen, H.; Xu, J.; Zi, G., Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment, Internat. J. Numer. Methods Engrg., 58, 1873-1905, (2003) · Zbl 1032.74662
[38] Song, J.-H.; Belytschko, T., Cracking node method for dynamic fracture with finite elements, Internat. J. Numer. Methods Engrg., 77, 360-385, (2009) · Zbl 1155.74415
[39] Protter, M. H.; Weinberger, H. F., Maximum principles in differential equations, (1984), Springer-Verlag · Zbl 0549.35002
[40] Benallal, A.; Marigo, J., Bifurcation and stability issues in gradient theories with softening, Modelling Simul. Mater. Sci. Eng., 15, S283, (2007)
[41] Lu, S.; Pister, K., Decomposition of the deformation and representation of the free energy function for isotropic thermoelastic solids, Internat. J. Solids Structures, 11, 927-934, (1975) · Zbl 0315.73018
[42] Miehe, C., Entropic thermoelasticity at finite strains. aspects of the formulation and numerical implementation, Comput. Methods Appl. Mech. Engrg., 120, 243-269, (1995) · Zbl 0851.73012
[43] Geyer, J.; Nemat-Nasser, F., Experimental investigation of thermally induced interacting cracks in brittle solids, Internat. J. Solids Structures, 18, 349-356, (1982)
[44] Sicsic, P.; Marigo, J. J.; Maurini, C., Initiation of a periodic array of cracks in the thermal shock problem: A gradient damage modeling, J. Mech. Phys. Solids, 256-284, (2014) · Zbl 1303.74008
[45] B. Bourdin, J. Marigo, C. Maurini, P. Sicsic, Morphogenesis and propagation of complex cracks induced by thermal shocks, ArXiv e-prints, 1 (2013) 1-5.
[46] Davidge, R.; Green, T., The strength of two-phase ceramic/Glass materials, J. Mater. Sci., 3, 629-634, (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.