zbMATH — the first resource for mathematics

An accurate error estimator for Guyan reduction. (English) Zbl 1423.74897
Summary: The objective of this study is to develop an error estimator that accurately predicts relative eigenvalue errors in finite element models reduced by Guyan reduction. We present a derivation procedure for the error estimator, in which Kidder’s transformation matrix for Guyan reduction is employed. We demonstrate the excellent performance of the proposed error estimator through various numerical examples: rectangular plate, cylindrical panel, hyperboloid panel, and shaft-shaft interaction problems.

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74H45 Vibrations in dynamical problems in solid mechanics
Full Text: DOI
[1] Guyan, R., Reduction of stiffness and mass matrices, AIAA J., 3, 2, 380, (1965)
[2] Irons, B. M., Eigenvalue economisers in vibration problems, J. Roy. Aeronaut. Soc., 67, 526, (1963)
[3] Irons, B. M., Structural eigenvalue problems: elimination of unwanted variables, AIAA J., 3, 961, (1965)
[4] Kidder, R. L., Reduction of structural frequency equations, AIAA J., 11, 6, 892, (1973)
[5] Kuhar, E. J.; Stahle, C. V., Dynamic transformation method for modal synthesis, AIAA J., 12, 5, 672-678, (1974)
[6] Leung, Y. T.L., An accurate method of dynamic condensation in structural analysis, Internat. J. Numer. Methods Engrg., 21, 1705-1715, (1978) · Zbl 0385.73076
[7] J. O’Callanhan, A procedure for an improved reduced system (IRS) model, in: Proceeding the 7th International Modal Analysis Conference, Bethel, CT, 1989.
[8] Suarez, L. E., Dynamic condensation method for structural eigenvalue analysis, AIAA J., 30, 4, 1046-1054, (1992)
[9] Friswell, M. I.; Garvey, S. D.; Penny, J. E.T., Model reduction using dynamic and iterated IRS techniques, J. Sound Vib., 186, 2, 311-323, (1995) · Zbl 1049.74725
[10] Friswell, M. I.; Garvey, S. D.; Penny, J. E.T., The convergence of the iterated IRS method, J. Sound Vib., 211, 1, 123-132, (1998) · Zbl 1235.74279
[11] Kim, K. O.; Kang, M. K., Convergence acceleration of iterative modal reduction methods, AIAA J., 39, 1, 134-140, (2001)
[12] Xia, Y.; Lin, R., A new iterative order reduction (IOR) method for eigensolutions of large structures, Internat. J. Numer. Methods Engrg., 59, 153-172, (2004) · Zbl 1047.74024
[13] Choi, D.; Kim, H.; Cho, M., Iterative method for dynamic condensation combined with substructuring scheme, J. Sound Vib., 317, 1-2, 199-218, (2008)
[14] Singh, M. P.; Suarez, L. E., Dynamic condensation with synthesis of substructure eigenproperties, J. Sound Vib., 159, 1, 139-155, (1992) · Zbl 0939.70510
[15] Bouhaddi, N.; Fillod, R., A method for selecting master DOF in dynamic substructuring using the guyan condensation method, Comput. Struct., 45, 5, 941-946, (1992)
[16] Bouhaddi, N.; Fillod, R., Substructuring by a two level dynamic condensation method, Comput. Struct., 60, 3, 403-409, (1996) · Zbl 0918.73355
[17] Kim, H.; Cho, M., Improvement of reduction method combined with sub-domain scheme in large-scale problem, Internat. J. Numer. Methods Engrg., 70, 206-251, (2007) · Zbl 1194.74116
[18] Henshell, R. D.; Ong, J. H., Automatic masters from eigenvalues economization, Earthq. Eng. Struct. Dyn., 3, 375-383, (1975)
[19] Ong, J. H., Improved automatic masters for eigenvalues economization, Finite Elem. Anal. Des., 3, 2, 149-160, (1987) · Zbl 0612.73090
[20] Shah, V. N.; Raymund, M., Analytical selection of masters for the reduced eigenvalue problem, Internat. J. Numer. Methods Engrg., 18, 1, 89-98, (1982) · Zbl 0468.73067
[21] Kim, K. O.; Choi, Y. J., Energy method for selection of degrees of freedom in condensation, AIAA J., 38, 7, 1253-1259, (2000)
[22] Cho, M.; Kim, H., Element-based node selection method for reduction of eigenvalue problems, AIAA J., 42, 8, 1677-1684, (2004)
[23] Ibrahimbegovic, A.; Wilson, E. L., Automated truncation of Ritz vector basis in modal transformation, ASCE J. Eng. Mech. Div., 116, 2506-2520, (1990)
[24] Markovic, D.; Park, K. C.; Ibrahimbegovic, A., Reduction of substructural interface degrees of freedom in flexibility-based component mode synthesis, Internat. J. Numer. Methods Engrg., 70, 163-180, (2007) · Zbl 1194.74120
[25] K.C. Park, J.G. Kim, P.S. Lee, A mode selection criterion based on flexibility approach in component mode synthesis. in: Proceeding 53th AIAA/ASME/ASCE/AHS /ASC Structures, Structural Dynamics, and Materials Conference USA, Hawaii, 2012.
[26] Hughes, T. J.R., The finite element method: linear static and dynamic finite element analysis, (2000), Dover: Mineola NY, USA · Zbl 1191.74002
[27] Turner, M. J.; Clough, R. W.; Martin, H. C.; Topp, L. J., Stiffness and deflection analysis of complex structures, J. Aeronaut. Sci., 23, 805-823, (1956) · Zbl 0072.41003
[28] Kim, J. G.; Lee, G. H.; Lee, P. S., Estimating relative eigenvalue errors in the Craig-Bampton method, Comput. Struct., 139, 54-64, (2014)
[29] Dvorkin, E. N.; Bathe, K. J., A continuum mechanics based four-node shell element for general nonlinear analysis, Eng. Comput., 1, 1, 77-88, (1984)
[30] Bathe, K. J.; Dvorkin, E. N., A formulation of general shell elements-the use of mixed interpolation of tensorial components, Internat. J. Numer. Methods Engrg., 22, 3, 697-722, (1986) · Zbl 0585.73123
[31] Lee, P. S.; Bathe, K. J., The quadratic MITC plate and MITC shell elements in plate bending, Adv. Eng. Softw., 41, 5, 712-728, (2010) · Zbl 1195.74184
[32] Bathe, K. J.; Lee, P. S., Measuring the convergence behavior of shell analysis schemes, Comput. Struct., 89, 3-4, 285-301, (2011)
[33] Lee, Y. G.; Yoon, K.; Lee, P. S., Improving the MITC3 shell finite element by using the Hellinger-Reissner principle, Comput. Struct., 110-111, 93-106, (2012)
[34] R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK Users’ Guide: solution of large scale eigenvalue problems with implicitly restarted Arnoldi methods, Software Environ, 1997.
[35] Ibrahimbegovic, A.; Chen, H. C.; Wilson, E. L.; Taylor, R. L., Ritz method for dynamic analysis of linear systems with non-proportional damping, Int. J. Earthq. Eng. Struct. Dyn., 19, 877-889, (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.