×

zbMATH — the first resource for mathematics

An “immersed” finite element method based on a locally anisotropic remeshing for the incompressible Stokes problem. (English) Zbl 1423.76203
Summary: In the present paper we study a finite element method for the incompressible Stokes problem with a boundary immersed in the domain on which essential constraints are imposed. Such type of methods may be useful to tackle problems with complex geometries, interfaces such as multiphase flow and fluid-structure interaction. The method we study herein consists in locally refining elements crossed by the immersed boundary such that newly added elements, called subelements, fit the immersed boundary. In this sense, this approach is of a fitted type, but with an original mesh given independently of the location of the immersed boundary. We use such a subdivision technique to build a new finite element basis, which enables us to represent accurately the immersed boundary and to impose strongly Dirichlet boundary conditions on it. However, the subdivision process may imply the generation of anisotropic elements, which, for the incompressible Stokes problem, may result in the loss of inf-sup stability even for well-known stable element schemes. We therefore use a finite element approximation, which appears stable also on anisotropic elements. We perform numerical tests to check stability of the chosen finite elements. Several numerical experiments are finally presented to illustrate the capabilities of the method. The method is presented for two-dimensional problems.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D07 Stokes and related (Oseen, etc.) flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Haslinger, J.; Renard, Y., A new fictitious domain approach inspired by the extended finite element method, SIAM J. Numer. Anal., 47, 1474-1499, (2009) · Zbl 1205.65322
[2] Fries, T.-P.; Belytschko, T., The extended/generalized finite element method: an overview of the method and its applications, Int. J. Numer. Meth. Engng., 84, 253-304, (2010) · Zbl 1202.74169
[3] Sanders, J.; Laursen, T.; Puso, M., A Nitsche embedded mesh method, Comput. Mech., 49, 243-257, (2012) · Zbl 1366.74075
[4] Ilinca, F.; Hétu, J.-F., A finite element immersed boundary method for fluid flow around rigid objects, Internat. J. Numer. Methods Fluids, 65, 856-875, (2011) · Zbl 1428.76100
[5] Löhner, R., Applied computational fluid dynamics techniques, an introduction based on finite element methods, (2008), John Wiley and Sons · Zbl 1151.76002
[6] Frey, P.; George, P.-L., Mesh generation, (2008), Wiley
[7] van Loon, R.; Anderson, P.; de Hart, J.; Baaijens, F., A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves, Int. J. Numer. Meth. Fluids, 46, 533-544, (2004) · Zbl 1060.76582
[8] van Loon, R.; Anderson, P.; van de Vosse, F., A fluid-structure interaction method with solid-rigid contact for heart valve dynamics, J. Comput. Phys., 217, 806-823, (2006) · Zbl 1099.74044
[9] Apel, T.; Randrianarivony, H., Stability of discretizations of the Stokes problem on anisotropic meshes, J. Math. Comput. Simul., 61, 437-447, (2003) · Zbl 1205.76072
[10] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 191, 5537-5552, (2002) · Zbl 1035.65125
[11] Parvizian, J.; Düster, A.; Rank, E., Finite cell method, Comput. Mech., 41, 121-133, (2007) · Zbl 1162.74506
[12] Basting, S.; Weismann, M., A hybrid level set-front tracking finite element approach for fluid-structure interaction and two-phase flow applications, J. Comput. Phys., 255, 228-244, (2013) · Zbl 1349.76176
[13] Boffi, D.; Brezzi, F.; Fortin, M., Mixed finite element methods, (2013), Springer
[14] Lew, A.; Buscaglia, G., A discontinuous-Galerkin-based immersed boundary method, Int. J. Numer. Meth. Engng., 76, 427-454, (2008) · Zbl 1195.76258
[15] Maury, B., Numerical analysis of a finite element/volume penalty method, SIAM J. Numer. Anal., 47, 2, 1126-1148, (2009) · Zbl 1191.65157
[16] Béchet, E.; Moës, N.; Wohlmuth, B., A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method, Int. J. Numer. Meth. Engng., 78, 931-954, (2009) · Zbl 1183.74259
[17] Burman, E.; Hansbo, P., Fictitious domain methods using cut elements: III. A stabilized Nitsche method for stokes’ problem, tech. rep., (2011), Jönköping University
[18] Baiges, J.; Codina, R.; Henke, F.; Shahmiri, S.; Wall, W., A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes, Int. J. Numer. Meth. Engng, (2012) · Zbl 1242.76108
[19] Court, S.; Fournier, M.; Lozinski, A., A fictitious domain approach for the Stokes problem based on the extended finite element method, Int. J. Numer. Meth. Fluids, 74, 73-99, (2014)
[20] Zlámal, M., On the finite element method, Numer. Math., 12, 394-409, (1968) · Zbl 0176.16001
[21] Ženíšek, A., The convergence of the finite element method for boundary value problems of a system of elliptic equations, Apl. Mat., 14, 355-377, (1969), (in czech) · Zbl 0188.22604
[22] Babuška, I.; Aziz, A., On the angle condition in the finite element method, SIAM J. Numer. Anal., 13, 2, 214-226, (1976) · Zbl 0324.65046
[23] Jamet, P., Estimations d’erreur pour des éléments finis droits presque dégénérés, RAIRO Anal. Numér., 10, 43-60, (1976) · Zbl 0346.65052
[24] Hannukainen, A.; Korotov, S.; Křížek, M., The maximum angle condition is not necessary for convergence of the finite element method, Numer. Math., 120, 79-88, (2012) · Zbl 1255.65196
[25] Auricchio, F.; Brezzi, F.; Lovadina, C., Mixed finite element methods, (Encyclopedia of Computational Mechanics, (2004), John Wiley & Sons), (Chapter 9)
[26] Elman, D.; Silvester, H.; Wathen, A., Finite elements and fast iterative solvers with applications in incompressible fluid dynamics, (2005), Oxford Press · Zbl 1083.76001
[27] Ern, A.; Guermond, J.-L., Theory and practice of finite elements, (2004), Springer
[28] Kamenski, L.; Huang, W.; Xu, H., Conditioning of finite element equations with arbitrary anistropic meshes, Math. Comput., 83, 289, 2187-2211, (2014) · Zbl 1303.65097
[29] Křížek, M., On the maximum angle condition for linear tetrahedral elements, SIAM J. Numer. Anal., 29, 2, 513-520, (1992) · Zbl 0755.41003
[30] da Veiga, L. B.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L.; Russo, A., Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23, 199-214, (2013) · Zbl 1416.65433
[31] da Veiga, L. B.o.; Brezzi, F.; Marini, L.; Russo, A., The hitchhiker’s guide to the virtual element method, Math. Models Methods Appl. Sci., 24, 1541-1573, (2014) · Zbl 1291.65336
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.