×

Galilean free Lie algebras. (English) Zbl 1423.83056

Summary: We construct free Lie algebras which, together with the algebra of spatial rotations, form infinite-dimensional extensions of finite-dimensional Galilei-Maxwell algebras appearing as global spacetime symmetries of extended non-relativistic objects and non-relativistic gravity theories. We show how various extensions of the ordinary Galilei algebra can be obtained by truncations and contractions, in some cases via an affine Kac-Moody algebra. The infinite-dimensional Lie algebras could be useful in the construction of generalized Newton-Cartan theories of gravity and the objects that couple to them.

MSC:

81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
17B01 Identities, free Lie (super)algebras
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] H. Bacry, P. Combe and J.L. Richard, Group-theoretical analysis of elementary particles in an external electromagnetic field. 1. the relativistic particle in a constant and uniform field, Nuovo Cim.A 67 (1970) 267 [INSPIRE]. · Zbl 0195.56002
[2] R. Schrader, The Maxwell group and the quantum theory of particles in classical homogeneous electromagnetic fields, Fortsch. Phys.20 (1972) 701 [INSPIRE]. · doi:10.1002/prop.19720201202
[3] S. Bonanos and J. Gomis, A Note on the Chevalley-Eilenberg Cohomology for the Galilei and Poincaré Algebras, J. Phys.A 42 (2009) 145206 [arXiv:0808.2243] [INSPIRE]. · Zbl 1162.81021
[4] S. Bonanos and J. Gomis, Infinite Sequence of Poincaré Group Extensions: Structure and Dynamics, J. Phys.A 43 (2010) 015201 [arXiv:0812.4140] [INSPIRE]. · Zbl 1182.81043
[5] J. Gomis and A. Kleinschmidt, On free Lie algebras and particles in electro-magnetic fields, JHEP07 (2017) 085 [arXiv:1705.05854] [INSPIRE]. · Zbl 1380.83104 · doi:10.1007/JHEP07(2017)085
[6] J. Beckers and V. Hussin, Minimal electromagnetic coupling schemes. II. Relativistic and nonrelativistic Maxwell groups, J. Math. Phys.24 (1983) 1295 [INSPIRE].
[7] D.V. Soroka and V.A. Soroka, Tensor extension of the Poincaré’ algebra, Phys. Lett.B 607 (2005) 302 [hep-th/0410012] [INSPIRE]. · Zbl 1247.81165
[8] J. Gomis, K. Kamimura and J. Lukierski, Deformations of Maxwell algebra and their Dynamical Realizations, JHEP08 (2009) 039 [arXiv:0906.4464] [INSPIRE]. · doi:10.1088/1126-6708/2009/08/039
[9] P. Salgado and S. Salgado, so \[\mathfrak{so} \](D − 1, 1) ⊗ so \[\mathfrak{so} \](D − 1, 2) algebras and gravity, Phys. Lett.B 728 (2014) 5 [INSPIRE]. · Zbl 1377.83103
[10] S. Bonanos, J. Gomis, K. Kamimura and J. Lukierski, Maxwell Superalgebra and Superparticle in Constant Gauge Badkgrounds, Phys. Rev. Lett.104 (2010) 090401 [arXiv:0911.5072] [INSPIRE]. · Zbl 1314.81163
[11] P. Concha, D.M. Peñafiel and E. Rodríguez, On the Maxwell supergravity and flat limit in 2 + 1 dimensions, Phys. Lett.B 785 (2018) 247 [arXiv:1807.00194] [INSPIRE]. · Zbl 1398.83121
[12] D.M. Peñafiel and L. Ravera, On the Hidden Maxwell Superalgebra underlying D = 4 Supergravity, Fortsch. Phys.65 (2017) 1700005 [arXiv:1701.04234] [INSPIRE]. · Zbl 07758189
[13] L. Ravera, Hidden role of Maxwell superalgebras in the free differential algebras of D = 4 and D = 11 supergravity, Eur. Phys. J.C 78 (2018) 211 [arXiv:1801.08860] [INSPIRE].
[14] L. Andrianopoli, R. D’Auria and L. Ravera, Hidden Gauge Structure of Supersymmetric Free Differential Algebras, JHEP08 (2016) 095 [arXiv:1606.07328] [INSPIRE]. · Zbl 1390.83360 · doi:10.1007/JHEP08(2016)095
[15] J. Gomis, A. Kleinschmidt and J. Palmkvist, Symmetries of M-theory and free Lie superalgebras, JHEP03 (2019) 160 [arXiv:1809.09171] [INSPIRE]. · Zbl 1414.81242 · doi:10.1007/JHEP03(2019)160
[16] H. Bacry, P. Combe and J.L. Richard, Group-theoretical analysis of elementary particles in an external electromagnetic field. 2. the nonrelativistic particle in a constant and uniform field, Nuovo Cim.A 70 (1970) 289 [INSPIRE]. · Zbl 0195.56002
[17] M. Le Bellac and J.M. Levy-Leblond, Galilean Electromagnetism, Nuovo Cim.B 14 (1973) 217.
[18] A. Barducci, R. Casalbuoni and J. Gomis, Classification of the k-contractions of the Maxwell algebra with no central charges, arXiv:1904.00902 [INSPIRE]. · Zbl 1504.81092
[19] C. Duval, G.W. Gibbons and P. Horvathy, Celestial mechanics, conformal structures and gravitational waves, Phys. Rev.D 43 (1991) 3907 [hep-th/0512188] [INSPIRE].
[20] D. Hansen, J. Hartong and N.A. Obers, Action Principle for Newtonian Gravity, Phys. Rev. Lett.122 (2019) 061106 [arXiv:1807.04765] [INSPIRE]. · Zbl 1433.83029
[21] N. Ozdemir, M. Ozkan, O. Tunca and U. Zorba, Three-Dimensional Extended Newtonian (Super)Gravity, JHEP05 (2019) 130 [arXiv:1903.09377] [INSPIRE]. · Zbl 1416.83078 · doi:10.1007/JHEP05(2019)130
[22] D. Hansen, J. Hartong and N.A. Obers, Gravity between Newton and Einstein, arXiv:1904.05706 [INSPIRE]. · Zbl 1433.83029
[23] E.A. Bergshoeff, K.T. Grosvenor, C. Simsek and Z. Yan, An Action for Extended String Newton-Cartan Gravity, JHEP01 (2019) 178 [arXiv:1810.09387] [INSPIRE]. · Zbl 1409.83176 · doi:10.1007/JHEP01(2019)178
[24] E. Cartan, Sur les variétés à connexion affine et la théorie de la rélativité généralisée (première partie), Annales Sci. École Norm. Sup.40 (1923) 325. · JFM 49.0542.02
[25] E. Cartan, Sur les variétés à connexion affine et la théorie de la rélativité généralisée (première partie) (suite), Annales Sci. École Norm. Sup.41 (1924) 1. · JFM 51.0581.01
[26] A. Trautman, Sur la theorie newtonienne de la gravitation, Compt. Rend. Acad. Sci. Paris247 (1963) 617. · Zbl 0115.43105
[27] P. HAVAS, Four-Dimensional Formulations of Newtonian Mechanics and Their Relation to the Special and the General Theory of Relativity, Rev. Mod. Phys.36 (1964) 938 [INSPIRE]. · Zbl 0123.44101 · doi:10.1103/RevModPhys.36.938
[28] R. De Pietri, L. Lusanna and M. Pauri, Standard and generalized Newtonian gravities as ‘gauge’ theories of the extended Galilei group. I. The standard theory, Class. Quant. Grav.12 (1995) 219 [gr-qc/9405046] [INSPIRE]. · Zbl 0898.53064
[29] R. Andringa, E. Bergshoeff, S. Panda and M. de Roo, Newtonian Gravity and the Bargmann Algebra, Class. Quant. Grav.28 (2011) 105011 [arXiv:1011.1145] [INSPIRE]. · Zbl 1217.83019
[30] L. Avilés, E. Frodden, J. Gomis, D. Hidalgo and J. Zanelli, Non-Relativistic Maxwell Chern-Simons Gravity, JHEP05 (2018) 047 [arXiv:1802.08453] [INSPIRE]. · Zbl 1391.81114 · doi:10.1007/JHEP05(2018)047
[31] E. Bergshoeff, J.M. Izquierdo, T. Ortín and L. Romano, Lie Algebra Expansions and Actions for Non-Relativistic Gravity, JHEP08 (2019) 048 [arXiv:1904.08304] [INSPIRE]. · Zbl 1421.83128
[32] J.A. de Azcárraga, D. Gútiez and J.M. Izquierdo, Extended D = 3 Bargmann supergravity from a Lie algebra expansion, arXiv:1904.12786 [INSPIRE]. · Zbl 1430.83099
[33] P. Concha and E. Rodríguez, Non-Relativistic Gravity Theory based on an Enlargement of the Extended Bargmann Algebra, JHEP07 (2019) 085 [arXiv:1906.00086] [INSPIRE]. · Zbl 1418.83043
[34] D.M. Peñafiel and P. Salgado-ReboLledó, Non-relativistic symmetries in three space-time dimensions and the Nappi-Witten algebra, arXiv:1906.02161 [INSPIRE]. · Zbl 1460.81036
[35] J. Gomis and H. Ooguri, Nonrelativistic closed string theory, J. Math. Phys.42 (2001) 3127 [hep-th/0009181] [INSPIRE]. · Zbl 1036.81030 · doi:10.1063/1.1372697
[36] U.H. Danielsson, A. Guijosa and M. Kruczenski, IIA/B, wound and wrapped, JHEP10 (2000) 020 [hep-th/0009182] [INSPIRE]. · Zbl 0965.81056 · doi:10.1088/1126-6708/2000/10/020
[37] J. Brugues, T. Curtright, J. Gomis and L. Mezincescu, Non-relativistic strings and branes as non-linear realizations of Galilei groups, Phys. Lett.B 594 (2004) 227 [hep-th/0404175] [INSPIRE]. · Zbl 1247.81351
[38] J. Brugues, J. Gomis and K. Kamimura, Newton-Hooke algebras, non-relativistic branes and generalized pp-wave metrics, Phys. Rev.D 73 (2006) 085011 [hep-th/0603023] [INSPIRE].
[39] C. Batlle, J. Gomis and D. Not, Extended Galilean symmetries of non-relativistic strings, JHEP02 (2017) 049 [arXiv:1611.00026] [INSPIRE]. · Zbl 1377.83109 · doi:10.1007/JHEP02(2017)049
[40] R. Andringa, E. Bergshoeff, J. Gomis and M. de Roo, ‘Stringy’ Newton-Cartan Gravity, Class. Quant. Grav.29 (2012) 235020 [arXiv:1206.5176] [INSPIRE]. · Zbl 1258.83041
[41] L. Avilés, J. Gomis and D. Hidalgo, Stringy (Galilei) Newton-Hooke Chern-Simons Gravities, arXiv:1905.13091 [INSPIRE]. · Zbl 1423.83046
[42] U. Niederer, The maximal kinematical invariance group of the free Schrödinger equation., Helv. Phys. Acta45 (1972) 802 [INSPIRE].
[43] C.R. Hagen, Scale and conformal transformations in galilean-covariant field theory, Phys. Rev.D 5 (1972) 377 [INSPIRE].
[44] J.A. de Azcarraga, J.M. Izquierdo, M. Picón and O. Varela, Generating Lie and gauge free differential (super)algebras by expanding Maurer-Cartan forms and Chern-Simons supergravity, Nucl. Phys.B 662 (2003) 185 [hep-th/0212347] [INSPIRE]. · Zbl 1022.22022
[45] F. Izaurieta, E. Rodriguez and P. Salgado, Expanding Lie (super)algebras through Abelian semigroups, J. Math. Phys.47 (2006) 123512 [hep-th/0606215] [INSPIRE]. · Zbl 1112.17005
[46] J.A. de Azcarraga, J.M. Izquierdo, M. Picón and O. Varela, Expansions of algebras and superalgebras and some applications, Int. J. Theor. Phys.46 (2007) 2738 [hep-th/0703017] [INSPIRE]. · Zbl 1128.17004
[47] H. Bacry and J. Levy-Leblond, Possible kinematics, J. Math. Phys.9 (1968) 1605 [INSPIRE]. · Zbl 0162.58606
[48] G. Dautcourt, On the Newtonian limit of General Relativity, Acta Phys. Polon.B 21 (1990) 755. · Zbl 0988.83052
[49] G. Dautcourt, PostNewtonian extension of the Newton-Cartan theory, Class. Quant. Grav.14 (1997) A109 [gr-qc/9610036] [INSPIRE]. · Zbl 0871.70016
[50] D. Van den Bleeken, Torsional Newton-Cartan gravity from the large c expansion of general relativity, Class. Quant. Grav.34 (2017) 185004 [arXiv:1703.03459] [INSPIRE]. · Zbl 1373.83090 · doi:10.1088/1361-6382/aa83d4
[51] L.P. Eisenhart, Dynamical trajectories and geodesics, Annals Math.30 (1929) 591. · JFM 55.0452.06 · doi:10.2307/1968307
[52] J. Gomis and J.M. Pons, Poincaré Transformations and Galilei Transformations, Phys. Lett.A 66 (1978) 463 [INSPIRE].
[53] C. Duval, G. Burdet, H.P. Kunzle and M. Perrin, Bargmann Structures and Newton-cartan Theory, Phys. Rev.D 31 (1985) 1841 [INSPIRE].
[54] B. Julia and H. Nicolai, Null Killing vector dimensional reduction and Galilean geometrodynamics, Nucl. Phys.B 439 (1995) 291 [hep-th/9412002] [INSPIRE]. · Zbl 0990.83510
[55] V. Bargmann, On Unitary Ray Representations Of Continuous Groups, Annals Math.59 (1954) 1. · Zbl 0055.10304 · doi:10.2307/1969831
[56] J.-M. Levy-Leblond, Nonrelativistic particles and wave equations, Commun. Math. Phys.6 (1967) 286 [INSPIRE]. · Zbl 0154.46004 · doi:10.1007/BF01646020
[57] J.-M. Souriau, Structure des systèmes dynamiques, Dunod (1970), Structure of Dynamical Systems: A Symplectic View of Physics, translated by C.H. Cushman-de Vries, R.H. Cushman and G.M. Tuynman, translation eds., Birkhäuser (1997).
[58] J. Niederle and A.G. Nikitin, Galilean equations for massless fields, J. Phys.A 42 (2009) 105207 [arXiv:0810.1894] [INSPIRE]. · Zbl 1178.81264
[59] S. Sachdev, Quantum Phase Transitions, Cambridge University Press (2011). · Zbl 1233.82003
[60] J. Zaanen, Y. Liu, Y.-W. Sun and K. Schalm, Holographic Duality in Condensed Matter Physics, Cambridge University Press (2015).
[61] E. Bergshoeff, J. Gomis and Z. Yan, Nonrelativistic String Theory and T-duality, JHEP11 (2018) 133 [arXiv:1806.06071] [INSPIRE]. · Zbl 1404.83113 · doi:10.1007/JHEP11(2018)133
[62] J. Gomis, J. Oh and Z. Yan, Nonrelativistic String Theory in Background Fields, arXiv:1905.07315 [INSPIRE]. · Zbl 1427.83102
[63] A.D. Gallegos, U. Gürsoy and N. Zinnato, Torsional Newton Cartan gravity from non-relativistic strings, arXiv:1906.01607 [INSPIRE]. · Zbl 1454.83131
[64] E. Bergshoeff, J. Rosseel and T. Zojer, Newton-Cartan (super)gravity as a non-relativistic limit, Class. Quant. Grav.32 (2015) 205003 [arXiv:1505.02095] [INSPIRE]. · Zbl 1327.83253 · doi:10.1088/0264-9381/32/20/205003
[65] E.A. Bergshoeff and J. Rosseel, Three-Dimensional Extended Bargmann Supergravity, Phys. Rev. Lett.116 (2016) 251601 [arXiv:1604.08042] [INSPIRE]. · doi:10.1103/PhysRevLett.116.251601
[66] A. Barducci, R. Casalbuoni and J. Gomis, Non-relativistic Spinning Particle in a Newton-Cartan Background, JHEP01 (2018) 002 [arXiv:1710.10970] [INSPIRE]. · Zbl 1384.83006 · doi:10.1007/JHEP01(2018)002
[67] J. Hartong, Y. Lei, N.A. Obers and G. Oling, Zooming in on AdS3/CF T2near a BPS bound, JHEP05 (2018) 016 [arXiv:1712.05794] [INSPIRE]. · Zbl 1391.81165
[68] M. Cederwall and J. Palmkvist, Superalgebras, constraints and partition functions, JHEP08 (2015) 036 [arXiv:1503.06215] [INSPIRE]. · Zbl 1388.81178 · doi:10.1007/JHEP08(2015)036
[69] V.G. Kac, Infinite-dimensional Lie algebras, Cambridge University Press (1990) [INSPIRE]. · Zbl 0716.17022
[70] E.A. Bergshoeff, I. De Baetselier and T.A. Nutma, E11and the embedding tensor, JHEP09 (2007) 047 [arXiv:0705.1304] [INSPIRE].
[71] R. Caroca, P. Concha, E. Rodríguez and P. Salgado-ReboLledó, Generalizing thebws \[3 \mathfrak{b}\mathfrak{w}{\mathfrak{s}}_3\] and 2D-conformal algebras by expanding the Virasoro algebra, Eur. Phys. J.C 78 (2018) 262 [arXiv:1707.07209] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.