zbMATH — the first resource for mathematics

An enhanced AMLS method and its performance. (English) Zbl 1425.65116
Summary: In this paper, we present an effective new component mode synthesis (CMS) method based on the concept of the automated multi-level substructuring (AMLS) method. Herein, the original transformation matrix of the AMLS method is enhanced by considering the residual mode effect, and the resulting unknown eigenvalue in the formulation is approximated by employing the idea of the improved reduced system (IRS) method. Using the newly defined transformation matrix, we develop an enhanced AMLS method by which original finite element (FE) models can be more precisely approximated by reduced models, and their solution accuracy is significantly improved. The formulation details of the enhanced AMLS method is presented, and its accuracy and computational cost is investigated through numerical examples.

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] Guyan, R., Reduction of stiffness and mass matrices, AIAA J., 3, 2, 380, (1965)
[2] Irons, B. M., Structural eigenvalue problems: elimination of unwanted variables, AIAA J., 3, 961, (1965)
[3] Friswell, M. I.; Garvey, S. D.; Penny, J. E.T., Model reduction using dynamic and iterated IRS techniques, J. Sound Vib., 186, 2, 311-323, (1995) · Zbl 1049.74725
[4] Xia, Y.; Lin, R., A new iterative order reduction (IOR) method for eigensolutions of large structures, Internat. J. Numer. Methods Engrg., 59, 153-172, (2004) · Zbl 1047.74024
[5] Hurty, W., Dynamic analysis of structural systems using component modes, AIAA J., 3, 4, 678-685, (1965)
[6] Craig, R. R.; Bampton, M. C.C., Coupling of substructures for dynamic analysis, AIAA J., 6, 7, 1313-1319, (1965) · Zbl 0159.56202
[7] MacNeal, R. H., Hybrid method of component mode synthesis, Comput. Struct., 1, 4, 581-601, (1971)
[8] Benfield, W. A.; Hruda, R. F., Vibration analysis of structures by component mode substitution, AIAA J., 9, 1255-1261, (1971) · Zbl 0214.23802
[9] Rubin, S., Improved component-mode representation for structural dynamic analysis, AIAA J., 13, 8, 995-1006, (1975) · Zbl 0334.70014
[10] Park, K. C.; Park, Y. H., Partitioned component mode synthesis via a flexibility approach, AIAA J., 42, 6, 1236-1245, (2004)
[11] Rixen, D. J., A dual Craig-Bampton method for dynamic substructuring, J. Comput. Appl. Math., 168, 1-2, 383-391, (2004) · Zbl 1107.70303
[12] K.C. Park, J.G. Kim, P.S. Lee, A mode selection criterion based on flexibility approach in component mode synthesis, in: Proceeding 53th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference Hawaii, USA, 2012.
[13] Bourquin, F., Analysis and comparison of several component mode synthesis methods on one dimensional domains, Numer. Math., 58, 1, 11-33, (1990) · Zbl 0686.34026
[14] Bourquin, F., Component mode synthesis and eigenvalues of second order operators: discretization and algorithm, Math. Model. Numer. Anal., 26, 3, 385-423, (1992) · Zbl 0765.65100
[15] Bourquin, F.; d’Hennezel, F., Intrinsic component mode synthesis and plate vibrations, Comput. Struct., 44, 1-2, 315-324, (1992) · Zbl 0766.73076
[16] Bourquin, F.; d’Hennezel, F., Numerical study of an intrinsic component mode synthesis method, Comput. Methods Appl. Mech. Engrg., 97, 1, 49-76, (1992) · Zbl 0763.73080
[17] Bennighof, J. K.; Lehoucq, R. B., An automated multi-level substructuring method for eigenspace computation in linear elastodynamics, SIAM J. Sci. Comput., 25, 6, 2084-2106, (2004) · Zbl 1133.65304
[18] J. O’Callahan, A procedure for an improved reduced system (IRS) model, in: Proceeding of the 7th International Modal Analysis Conference, CT, Bethel, 1989.
[19] Kaplan, M. F., Implementation of automated multi-level substructuring for frequency response analysis of structures, (2001), Department of Aerospace Engineering & Engineering Mechanics University of Texas at Austin, Austin, TX, (Ph.D. thesis)
[20] J.K. Bennighof, M.F. Kaplan, Frequency sweep analysis using multi-level substructuring, global modes and iteration, in: Proceedings of the 39th Annual AIAA Structural Dynamics and Materials Conference, Long Beach, CA, 1998.
[21] Boo, S. H.; Kim, J. G.; Lee, P. S., Error estimation for the automated multi-level substructuring method, Internat. J. Numer. Methods Engrg., (2015), submitted for publication
[22] Ibrahimbegovic, A.; Chen, H. C.; Wilson, E. L.; Taylor, R. L., Ritz method for dynamic analysis of linear systems with non-proportional damping, Int. J. Earthq. Eng. Struct. Dyn., 19, 877-889, (1990)
[23] Dvorkin, E. N.; Bathe, K. J., A continuum mechanics based four-node shell element for general nonlinear analysis, Eng. Comput., 1, 1, 77-88, (1984)
[24] Bathe, K. J.; Dvorkin, E. N., A formulation of general shell elements-the use of mixed interpolation of tensorial components, Internat. J. Numer. Methods Engrg., 22, 3, 697-722, (1986) · Zbl 0585.73123
[25] Lee, Y.; Yoon, K. H.; Lee, P. S., Improving the MITC3 shell finite element by using the Hellinger-Reissner principle, Comput. Struct., 110-111, 93-106, (2012)
[26] Lee, Y.; Lee, P. S.; Bathe, K. J., The MITC3+ shell finite element and its performance, Comput. Struct., 138, 12-23, (2014)
[27] Yoon, K. H.; Lee, Y.; Lee, P. S., A continuum mechanics based 3-D beam finite element with warping displacements and its modeling capabilities, Struct. Eng. Mech., 43, 4, 411-437, (2012)
[28] Kim, J. G.; Lee, K. H.; Lee, P. S., Estimating relative eigenvalue errors in the Craig-Bampton method, Comput. Struct., 139, 54-64, (2014)
[29] Kim, J. G.; Lee, P. S., An accurate error estimator for guyan reduction, Comput. Methods Appl. Mech. Engrg., 278, 1-19, (2014) · Zbl 1423.74897
[30] Ibrahimbegovic, A.; Wilson, E. L., Automated truncation of Ritz vector basis in modal transformation, ASCE J. Engrg. Mech. Div., 116, 2506-2520, (1990)
[31] Agrawal, O. P.; Shabana, A. A., Dynamic analysis of multibody systems using component modes, Comput. Struct., 21, 6, 1301-1312, (1985)
[32] Gerstmayr, J.; Ambrosio, J. A.C., Component mode synthesis with constant mass and stiffness matrices applied to flexible multibody systems, Internat. J. Numer. Methods Engrg., 73, 1518-1546, (2008) · Zbl 1162.74019
[33] Ibrahimbegovic, A.; Taylor, R. L.; Lim, H., Nonlinear dynamics of flexible multibody systems, Comput. Struct., 81, 1113-1132, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.