×

zbMATH — the first resource for mathematics

Flexible multibody dynamics using coordinate reduction improved by dynamic correction. (English) Zbl 1425.70012
Summary: This paper is concerned with the efficient dynamic analysis of flexible multibody systems using a robust coordinate reduction technique. Unlike conventional static correction, the formulation is derived by dynamic correction that considers the inertia effect. In this formulation, the constraint and fixed-interface normal modes, which are representative modes in the typical coordinate reduction, are corrected by considering the truncated modal effect with the residual flexibility. Therefore, the proposed method can offer a more precise reduced system without increasing the dimension, which consequently leads to a more accurate and efficient flexible multibody simulation. We implement here the proposed method under augmented formulations of the floating reference frame approach, and test its performance with numerical examples.

MSC:
70E55 Dynamics of multibody systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Shabana, A.A.: Dynamics of Multibody Systems. Wiley, New York (1989) · Zbl 0698.70002
[2] Wu, S.C.; Haug, E.J.; Kim, S.S., A variational approach to dynamics of flexible multibody systems, J. Struct. Mech., 17, 3-32, (1989)
[3] Shabana, A.A., Flexible multibody dynamics: review of past and recent developments, Multibody Syst. Dyn., 1, 189-222, (1997) · Zbl 0893.70008
[4] Shabana, A.A.: Computational Dynamics. Wiley, New York (2001) · Zbl 1182.70001
[5] Michael, L.; Eberhard, P., A two-step approach for model reduction in flexible multibody dynamics, Multibody Syst. Dyn., 17, 157-176, (2007) · Zbl 1113.70004
[6] Jorg, F.; Eberhard, P., Simulation process of flexible multibody systems with non-modal model order reduction techniques, Multibody Syst. Dyn., 25, 313-334, (2011) · Zbl 1243.70002
[7] Baumann, M.; Eberhard, P., Interpolation-based parametric model order reduction for material removal in elastic multibody systems, Multibody Syst. Dyn., 39, 21-36, (2016) · Zbl 1404.70017
[8] Agrawal, O.P.; Shabana, A.A., Dynamic analysis of multibody systems using component modes, Comput. Struct., 21, 1303-1312, (1985)
[9] Koutsovasilis, P.; Betelschmdt, M., Comparison of model reduction techniques for large mechanical systems: a study on an elastic rod, Multibody Syst. Dyn., 20, 111-128, (2008) · Zbl 1332.70024
[10] Koutsovasilis, P., Improved component mode synthesis and variants, Multibody Syst. Dyn., 29, 343-359, (2013)
[11] Boer, S.E.; Aarts, R.G.K.M.; Meijaard, J.P.; Brouwer, D.M.; Jonker, J.B., A nonlinear two-node superelement with deformable-interface surfaces for use in flexible multibody systems, Multibody Syst. Dyn., 34, 53-79, (2015) · Zbl 1321.70006
[12] Wu, L., Tiso, P.: Nonlinear model order reduction for flexible multibody dynamics: a modal derivatives approach. Multibody Syst. Dyn. (2015) published online · Zbl 1352.70018
[13] Yoo, W.S.; Haug, E.J., Dynamics of flexible mechanical systems using vibration and static correction modes, J. Mech. Transm. Autom. Des., 108, 315-322, (1986)
[14] Guyan, R.J., Reduction of stiffness and mass matrices, AIAA J., 3, 380, (1965)
[15] Irons, B.M., Structural eigenvalue problems: elimination of unwanted variables, AIAA J., 3, 961, (1965)
[16] Bampton, M.C.C.; Craig, R.R., Coupling of substructures for dynamic analyses, AIAA J., 6, 1313-1319, (1968) · Zbl 0159.56202
[17] Craig, R.R., Kurdila, A.J.: Fundamentals of Structural Dynamics. Wiley, New York (2006) · Zbl 1118.70001
[18] MacNeal, R.H., A hybrid method of component mode synthesis, Comput. Struct., 1, 581-601, (1971)
[19] Craig, R.R.; Chang, C.J., Free-interface methods of substructure coupling for dynamic analysis, AIAA J., 14, 1633-1635, (1976)
[20] Park, K.C.; Park, Y.H., Partitioned component mode synthesis via a flexibility approach, AIAA J., 42, 1236-1245, (2004)
[21] Rixen, D.J., A dual Craig-Bampton method for dynamic substructuring, J. Comput. Appl. Math., 168, 383-391, (2004) · Zbl 1107.70303
[22] Kim, J.G.; Markovic, D., High-fidelity flexibility based CMS method with interface degrees of freedom reduction, AIAA J., 54, 3619-3631, (2016)
[23] O’Callahan, J.C., A procedure for an improved reduced system (IRS) model, Las Vegas, NV, USA
[24] Friswell, M.I.; Garvey, S.D.; Penny, J.E.T., Model reduction using dynamic and iterated IRS techniques, J. Sound Vib., 186, 311-323, (1995) · Zbl 1049.74725
[25] Kim, J.G.; Boo, S.H.; Lee, P.S., An enhanced AMLS method and its performance, Comput. Methods Appl. Mech. Eng., 287, 90-111, (2015) · Zbl 1425.65116
[26] Kim, J.G.; Lee, P.S., An enhanced Craig-Bampton method, Int. J. Numer. Methods Eng., 103, 79-93, (2015) · Zbl 1352.74378
[27] Kim, J.G.; Park, Y.J.; Lee, G.H.; Kim, D.N., A general model reduction with primal assembly in structural dynamics, Comput. Methods Appl. Mech. Eng., 324, 1-28, (2017)
[28] Kim, S.M.; Kim, J.G.; Chae, S.W.; Park, K.C., Evaluating mode selection methods for component mode synthesis, AIAA J., 54, 2852-2863, (2016)
[29] Kim, S.S.; Haug, E.J., Selection of deformation modes for flexible multibody dynamics, J. Struct. Mech., 18, 565-586, (1990)
[30] Elssel, K.; Voss, H., An a priori bound for automated multilevel substructuring, SIAM J. Matrix Anal. Appl., 28, 386-397, (2007) · Zbl 1116.65044
[31] Kim, J.G.; Lee, K.H.; Lee, P.S., Estimating eigenvalue errors in the Craig-Bampton method, Comput. Struct., 193, 54-64, (2014)
[32] Kim, J.G.; Lee, P.S., Posteriori error estimation method for flexibility-based component mode synthesis, AIAA J., 53, 2828-2837, (2015)
[33] Jensen, H.A.; Muñoz, A.; Papadimitriou, C.; Vergara, C., An enhanced substructure coupling technique for dynamic re-analyses: application to simulation-based problems, Comput. Methods Appl. Mech. Eng., 307, 215-234, (2016)
[34] Cui, J.; Xing, J.; Wang, X.; Wang, Y.; Zhu, S.; Zheng, G., A simultaneous iterative scheme for the Craig-Bampton reduction based substructuring, No. 4, 103-114, (2017), Berlin
[35] Lim, J.H.; Hwang, D.S.; Kim, K.W.; Lee, G.H.; Kim, J.G., A coupled dynamic loads analysis of satellites with an enhanced Craig-Bampton approach, Aerosp. Sci. Technol., 69, 114-122, (2017)
[36] Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, New York (2009) · Zbl 1378.65009
[37] Chu, S.C., Pan, K.C.: Dynamic response of a high-speed Slider-Crank mechanism with an elastic connecting rod. J. Eng. Ind. (1975)
[38] Shabana, A.A., Dynamics of constrained flexible system using consistent, lumped and hybrid mass formulation, (1984)
[39] Nastran, M.: Basic dynamic analysis user’s guide, MSC. Software Corporation. USA, 546 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.