Stability and monotonicity for some discretizations of the Biot’s consolidation model. (English) Zbl 1425.74164

Summary: We consider finite element discretizations of the Biot’s consolidation model in poroelasticity with MINI and stabilized P1-P1 elements. We analyze the convergence of the fully discrete model based on spatial discretization with these types of finite elements and implicit Euler method in time. We also address the issue related to the presence of non-physical oscillations in the pressure approximation for low permeabilities and/or small time steps. We show that even in 1D a Stokes-stable finite element pair fails to provide a monotone discretization for the pressure in such regimes. We then introduce a stabilization term which removes the oscillations. We present numerical results confirming the monotone behavior of the stabilized schemes.


74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74B05 Classical linear elasticity
Full Text: DOI arXiv


[1] Terzaghi, K., Theoretical soil mechanics, (1943), Wiley New York
[2] Biot, M. A., General theory of three dimensional consolidation, J. Appl. Phys., 12, 2, 155-164, (1941) · JFM 67.0837.01
[3] Biot, M. A., Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26, 2, 182-185, (1955) · Zbl 0067.23603
[4] Showalter, R., Diffusion in poro-elastic media, J. Math. Anal. Appl., 251, 1, 310-340, (2000) · Zbl 0979.74018
[5] Ženíšek, A., The existence and uniqueness theorem in biot’s consolidation theory, Apl. Mat., 29, 3, 194-211, (1984) · Zbl 0557.35005
[6] Dautov, R. Z.; Drobotenko, M. I.; Lyashko, A. D., Study on well-posedness of the generalized solution of the problem of filtration consolidation, Differents. Uravnenia, 33, 515-521, (1997) · Zbl 0906.76088
[7] Roose, T.; Netti, P. A.; Munn, L. L.; Boucher, Y.; Jain, R. K., Solid stress generated by spheroid growth estimated using a linear poroelasticity model, Microvasc. Res., 66, 3, 204-212, (2003)
[8] Swan, C.; Lakers, R.; Brand, R.; Stewart, K., Micromechanically based poroelastic modeling of fluid flow in Haversian bone, J. Biomech. Eng., 125, 25-37, (2003)
[9] Amit Halder, A. D.; Datta, A. K., Modeling transport in porous media wiith phase change: applications to food processing, J. Heat Transfer, 133, (2010), 031010-1-031010-13
[10] Coussy, O., Poromechanics, (2004), John Wiley & Sons, Ltd.
[11] Barry, S. I.; Mercer, G. N., Exact solutions for two-dimensional time-dependent flow and deformation within a poroelastic medium, J. Appl. Mech., 66, 536, (1999)
[12] Lewis, R.; Schrefler, B., The finite element method in the static and dynamic deformation and consolidation of porous media, (1998), Wiley New York · Zbl 0935.74004
[13] Lewis, R. W.; Schrefler, B., A fully coupled consolidation model of the subsidence of Venice, Water Resour. Res., 14, 2, 223-230, (1978)
[14] Lewis, R. W.; Tran, D. V., Numerical simulation of secondary consolidation of soil: finite element application, Int. J. Numer. Anal. Methods Geomech., 13, 1, 1-18, (1989)
[15] Lewis, R. W.; Schrefler, B. A.; Simoni, L., Coupling versus uncoupling in soil consolidation, Int. J. Numer. Anal. Methods Geomech., 15, 8, 533-548, (1991)
[16] Masters, I.; Pao, W. K.S.; Lewis, R. W., Coupling temperature to a double-porosity model of deformable porous media, Internat. J. Numer. Methods Engrg., 49, 3, 421-438, (2000) · Zbl 0972.74066
[17] Gaspar, F. J.; Lisbona, F. J.; Vabishchevich, P. N., Finite difference schemes for poro-elastic problems, Comput. Methods Appl. Math., 2, 2, 132-142, (2002) · Zbl 1075.76600
[18] Ewing, R. E.; Iliev, O. P.; Lazarov, R. D.; Naumovich, A., On convergence of certain finite volume difference discretizations for 1d poroelasticity interface problems, Numer. Methods Partial Differential Equations, 23, 3, 652-671, (2007) · Zbl 1142.74386
[19] A. Naumovich, Efficient numerical methods for the biot poroelasticity system in multilayered domains, Kaiserslautern, Techn. Univ., Diss, 2007.
[20] Gaspar, F. J.; Lisbona, F. J.; Vabishchevich, P. N., A finite difference analysis of biot’s consolidation model, Appl. Numer. Math., 44, 4, 487-506, (2003) · Zbl 1023.76032
[21] Ferronato, M.; Castelletto, N.; Gambolati, G., A fully coupled 3-d mixed finite element model of Biot consolidation, J. Comput. Phys., 229, 12, 4813-4830, (2010) · Zbl 1305.76055
[22] Haga, J. B.; Osnes, H.; Langtangen, H. P., On the causes of pressure oscillations in low-permeable and low-compressible porous media, Int. J. Numer. Anal. Methods Geomech., 36, 12, 1507-1522, (2012)
[23] Favino, M.; Grillo, A.; Krause, R., A stability condition for the numerical simulation of poroelastic systems, (Hellmich, C.; Pichler, B.; Adam, D., Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics, (2013)), 919-928
[24] Phillips, P.; Wheeler, M., Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach, Comput. Geosci., 13, 1, 5-12, (2009) · Zbl 1172.74017
[25] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 8, R-2, 129-151, (1974) · Zbl 0338.90047
[26] Murad, M. A.; Loula, A. F.D., Improved accuracy in finite element analysis of biot’s consolidation problem, Comput. Methods Appl. Mech. Engrg., 95, 3, 359-382, (1992) · Zbl 0760.73068
[27] Murad, M. A.; Loula, A. F.D., On stability and convergence of finite element approximations of biot’s consolidation problem, Internat. J. Numer. Methods Engrg., 37, 4, 645-667, (1994) · Zbl 0791.76047
[28] Murad, M. A.; Thomée, V.; Loula, A. F.D., Asymptotic behavior of semidiscrete finite-element approximations of biot’s consolidation problem, SIAM J. Numer. Anal., 33, 3, 1065-1083, (1996) · Zbl 0854.76053
[29] Aguilar, G.; Gaspar, F.; Lisbona, F.; Rodrigo, C., Numerical stabilization of biot’s consolidation model by a perturbation on the flow equation, Internat. J. Numer. Methods Engrg., 75, 11, 1282-1300, (2008) · Zbl 1158.74473
[30] Taylor, C.; Hood, P., A numerical solution of the Navier-Stokes equations using the finite element technique, Internat. J. Comput. & Fluids, 1, 1, 73-100, (1973) · Zbl 0328.76020
[31] Vermeer, P. A.; Verruijt, A., An accuracy condition for consolidation by finite elements, Int. J. Numer. Anal. Methods Geomech., 5, 1, 1-14, (1981) · Zbl 0456.73060
[32] Arnold, D. N.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations, Calcolo, 21, 4, 337-344, (1985) · Zbl 0593.76039
[33] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods, (1991), Springer New York · Zbl 0788.73002
[34] Boffi, D.; Brezzi, F.; Fortin, M., (Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, vol. 44, (2013), Springer Heidelberg)
[35] Zulehner, W., Nonstandard norms and robust estimates for saddle point problems, SIAM J. Matrix Anal. Appl., 32, 2, 536-560, (2011) · Zbl 1251.65078
[36] Stenberg, R., A technique for analysing finite element methods for viscous incompressible flow, the Seventh International Conference on Finite Elements in Flow Problems (Huntsville, AL, 1989), Internat. J. Numer. Methods Fluids, 11, 6, 935-948, (1990) · Zbl 0704.76017
[37] Brezzi, F.; Pitkäranta, J., On the stabilization of finite element approximations of the Stokes equations, (Efficient Solutions of Elliptic Systems (Kiel, 1984), Notes Numer. Fluid Mech., Vol. 10, (1984), Friedr. Vieweg, Braunschweig), 11-19 · Zbl 0552.76002
[38] Pierre, R., Regularization procedures of mixed finite element approximations of the Stokes problem, Numer. Methods Partial Differential Equations, 5, 3, 241-258, (1989) · Zbl 0672.76038
[39] Verfürth, R., Error estimates for a mixed finite element approximation of the Stokes equations, RAIRO Anal. Numér., 18, 2, 175-182, (1984) · Zbl 0557.76037
[40] C. Rodrigo, F. Gaspar, X. Hu, L.T. Zikatanov, Stability and Monotonicity for Some Discretizations of the Biot’s Model (Apr. 2015). arXiv:1504.07150. · Zbl 1425.74164
[41] Bank, R. E.; Welfert, B. D., A comparison between the mini-element and the Petrov-Galerkin formulations for the generalized Stokes problem, Comput. Methods Appl. Mech. Engrg., 83, 1, 61-68, (1990) · Zbl 0732.65100
[42] Hughes, T. J.R.; Franca, L. P.; Balestra, M., A new finite element formulation for computational fluid dynamics. V. circumventing the babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg., 59, 1, 85-99, (1986) · Zbl 0622.76077
[43] Brezzi, F.; Douglas, J., Stabilized mixed methods for the Stokes problem, Numer. Math., 53, 1-2, 225-235, (1988) · Zbl 0669.76052
[44] Thomée, V., (Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics, vol. 25, (2006), Springer-Verlag Berlin) · Zbl 1105.65102
[45] Mandel, J., Consolidation des sols (étude de mathématique), Géotechnique, 3, 287-299, (1953)
[46] Skempton, A. W., The pore-pressure coefficients A and B, Géotechnique, 4, (1954), 143-147(4)
[47] Abousleiman, Y.; Cheng, A.-D.; Cui, L.; Detournay, E.; Roegiers, J.-C., Mandel’s problem revisited, Geotechnique, 46, 2, 187-195, (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.