Convection in a coupled free flow-porous media system. (English) Zbl 1425.76249

Summary: We perform linear and nonlinear stability analysis for thermal convection in a fluid overlying a saturated porous medium. We use a coupled system, with the Navier-Stokes equations and Darcy’s equation governing the free-flow and the porous regions, respectively. Incorporating a dynamic pressure term in the Lions interface condition (which specifies the normal force balance across the fluid-medium interface) permits an energy bound on the typically uncooperative nonlinear advection term, enabling new nonlinear stability results. Within certain regimes, the nonlinear stability thresholds agree closely with the linear ones, and we quantify the differences that exist. We then compare stability thresholds produced by several common variants of the tangential interface conditions, using both numerics and asymptotics in the small Darcy number limit. Finally, we investigate the transition between full convection and fluid-dominated convection using both numerics and a heuristic theory. This heuristic theory is based on comparing the ratio of the Rayleigh number in each domain to its corresponding critical value, and it is shown to agree reasonably well with the numerics regarding how the transition depends on the depth ratio, the Darcy number, and the thermal-diffusivity ratio.


76S05 Flows in porous media; filtration; seepage
76E20 Stability and instability of geophysical and astrophysical flows


Full Text: DOI arXiv


[1] M. B. Allen, Collocation Techniques for Modeling Compositional Flows in Oil Reservoirs, Springer, New York, 1984.
[2] M. B. Allen, A. Behie, and J. A. Trangenstein, Multiphase Flow in Porous Media: Mechanics, Mathematics, and Numerics, Springer, New York, 1988. · Zbl 0652.76063
[3] J. Bear, Dynamics of Fluids in Porous Media, Dover, New York, 1972. · Zbl 1191.76001
[4] G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30 (1967), pp. 197–207, https://doi.org/10.1017/S0022112067001375.
[5] F. Boano, J. W. Harvey, A. Marion, A. I. Packman, R. Revelli, L. Ridolfi, and A. Wörman, Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications, Rev. Geophys., 52 (2014), pp. 603–679, https://doi.org/10.1002/2012RG000417.
[6] S. Buss, et al., The Hyporheic Handbook: A Handbook on the Groundwater-Surfacewater Interface and Hyporheic Zone for Environmental Managers, Environment Agency, Bristol, UK, 2009.
[7] R. Camassa, R. M. McLaughlin, M. N. J. Moore, and K. Yu, Stratified flows with vertical layering of density: Experimental and theoretical study of flow configurations and their stability, J. Fluid Mech., 690 (2012), pp. 571–606. · Zbl 1241.76161
[8] M. B. Cardenas, Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus, Water Resour. Res., 51 (2015), pp. 3601–3616, https://doi.org/10.1002/2015WR017028.
[9] M. Carr, Penetrative convection in a superposed porous-medium–fluid layer via internal heating, J. Fluid Mech, 509 (2004), pp. 305–329, https://doi.org/10.1017/S0022112004009413. · Zbl 1163.76361
[10] M. Carr and B. Straughan, Penetrative convection in a fluid overlying a porous layer, Adv. Water Resour., 26 (2003), pp. 263–276, https://doi.org/10.1016/S0309-1708(02)00086-6.
[11] A. Çeşmelioğlu and B. Riviere, Analysis of time-dependent Navier–Stokes flow coupled with Darcy flow, J. Numer. Math., 16 (2008), pp. 249–280, https://doi.org/10.1515/JNUM.2008.012. · Zbl 1159.76010
[12] A. Çeşmelioğlu and B. Rivière, Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow, J. Sci. Comput., 40 (2009), pp. 115–140, https://doi.org/10.1007/s10915-009-9274-4. · Zbl 1203.76078
[13] B. Chen, A. B. Cunningham, R. Ewing, R. Peralta, and E. J. Visser, Two-dimensional modeling of microscale transport and biotransformation in porous media, Numer. Methods Partial Differential Equations, 10 (1994), pp. 65–83, https://doi.org/10.1002/num.1690100105. · Zbl 0792.76078
[14] F. Chen and C. F. Chen, Onset of finger convection in a horizontal porous layer underlying a fluid layer, J. Heat Trans., 110 (1988), pp. 403–409, https://doi.org/10.1115/1.3250499.
[15] F. Chen and L. Hsu, Onset of thermal convection in an anisotropic and inhomogeneous porous layer underlying a fluid layer, J. Appl. Phys., 69 (1991), pp. 6289–6301, https://doi.org/10.1063/1.348827.
[16] F. Chen and J. Lu, Variable viscosity effects on convective instability in superposed fluid and porous layers, Phys. Fluids A, 4 (1992), pp. 1936–1944, https://doi.org/10.1063/1.858363. · Zbl 0825.76226
[17] N. Chen, M. Gunzburger, and X. Wang, Asymptotic analysis of the differences between the Stokes–Darcy system with different interface conditions and the Stokes–Brinkman system, J. Math. Anal. Appl., 368 (2010), pp. 658–676, https://doi.org/10.1016/j.jmaa.2010.02.022. · Zbl 1352.35093
[18] P. Chidyagwai and B. Riviere, A weak solution and a multinumerics solution of the coupled Navier–Stokes and Darcy equations, IMA J. Numer. Anal., 2007. · Zbl 1230.76023
[19] M. Discacciati and A. Quarteroni, Navier-Stokes/Darcy coupling: Modeling, analysis, and numerical approximation, Rev. Mat. Comput., 2 (2009), pp. 315–426. · Zbl 1172.76050
[20] J. J. Dongarra, B. Straughan, and D. W. Walker, Chebyshev Tau–QZ algorithm methods for calculating spectra of hydrodynamic stability problems, Appl. Numer. Math., 22 (1996), pp. 399–435, https://doi.org/10.1016/S0168-9274(96)00049-9. · Zbl 0867.76025
[21] P. G. Drazin and W. H. Reid, Hydrodynamic Stability, Cambridge University Press, Cambridge, 2004.
[22] T. A. Driscoll, N. Hale, and L. N. Trefethen, Chebfun Guide, Pafnuty Publications, Oxford, 2014.
[23] R. E. Ewing, The need for multidisciplinary involvement in groundwater contaminant simulations, in Next Generation Environmental Models and Computational Methods, SIAM, Philadelphia, 1997, pp. 227–245. · Zbl 0894.76068
[24] R. E. Ewing and S. Weekes, Numerical methods for contaminant transport in porous media, in Advances in Computational Mathematics, Z. Chen, Y. Li, C. Micchelli, and Y. Xu, eds., Marcel Dekker, New York, 1998, pp. 75–95. · Zbl 0946.76057
[25] V. Girault and B. Rivière, DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition, SIAM J. Numer. Anal., 47 (2009), pp. 2052–2089, https://doi.org/10.1137/070686081. · Zbl 1406.76082
[26] G. H. Golub and C. F. Van Loan, Matrix Computations, Vol. 3, John Hopkins University Press, Baltimore, MD, 2012. · Zbl 1268.65037
[27] D. Han and X. Wang, Decoupled energy-law preserving numerical schemes for the Cahn-Hilliard-Darcy system, Numer. Methods Partial Differential Equations, 32 (2016), pp. 936–954. · Zbl 1381.76170
[28] A. Hill and M. Carr, Nonlinear stability of the one-domain approach to modelling convection in superposed fluid and porous layers, Proc. A, 466 (2010), pp. 2695–2705, https://doi.org/10.1098/rspa.2010.0014. · Zbl 1211.76061
[29] A. Hill and M. Carr, Sharp global nonlinear stability for a fluid overlying a highly porous material, Proc. A, 466 (2010), pp. 127–140, https://doi.org/10.1098/rspa.2009.0322. · Zbl 1195.76380
[30] A. Hill and B. Straughan, Global stability for thermal convection in a fluid overlying a highly porous material, Proc. A, 465 (2009), pp. 207–217, https://doi.org/10.1098/rspa.2008.0303. · Zbl 1186.76647
[31] I. P. Jones, Low reynolds number flow past a porous spherical shell, Math. Proc. Cambridge Philos. Soc., 73 (1973), pp. 231–238, https://doi.org/10.1017/S0305004100047642. · Zbl 0262.76061
[32] D. A. Kopriva, A staggered-grid multidomain spectral method for the compressible Navier–Stokes equations, J. Comput. Phys., 143 (1998), pp. 125–158. · Zbl 0921.76121
[33] M. Le Bars and M. G. Worster, Interfacial conditions between a pure fluid and a porous medium: Implications for binary alloy solidification, J. Fluid Mech., 550 (2006), pp. 149–173, https://doi.org/10.1017/S0022112005007998. · Zbl 1097.76066
[34] M. Le Bars and M. G. Worster, Solidification of a binary alloy: Finite-element, single-domain simulation and new benchmark solutions, J. Comput. Phys., 216 (2006), pp. 247–263, https://doi.org/10.1016/j.jcp.2005.12.002. · Zbl 1173.80310
[35] L. Lefebvre, J. Banhart, and D. Dunand, Porous metals and metallic foams: Current status and recent developments, Adv. Engrg. Mater., 10 (2008), pp. 775–787, https://doi.org/10.1002/adem.200800241.
[36] C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal., 10 (1973), pp. 241–256. · Zbl 0253.65019
[37] M. N. J. Moore, A fast Chebyshev method for simulating flexible-wing propulsion, J. Comput. Phys., 345 (2017), pp. 792–817. · Zbl 1378.74072
[38] M. N. J. Moore, Riemann-Hilbert problems for the shapes formed by bodies dissolving, melting, and eroding in fluid flows, Commun. Pure Appl. Math., 70 (2017), pp. 1810–1831. · Zbl 1464.76030
[39] D. Nield, Onset of convection in a fluid layer overlying a layer of a porous medium, J. Fluid Mech., 81 (1977), pp. 513–522, https://doi.org/10.1017/S0022112077002195. · Zbl 0364.76032
[40] D. Nield, The effect of temperature-dependent viscosity on the onset of convection in a saturated porous medium, J. Heat Transfer, 118 (1996), pp. 803–805, https://doi.org/10.1115/1.2822705.
[41] D. Nield and A. Bejan, Convection in Porous Media, 5th ed., Springer, New York, 2017. · Zbl 1375.76004
[42] L. Payne and B. Straughan, Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions, J. Math. Pures Appl., 77 (1998), pp. 317–354, https://doi.org/10.1016/S0021-7824(98)80102-5. · Zbl 0906.35067
[43] B. D. Quaife and M. N. J. Moore, A boundary-integral framework to simulate viscous erosion of a porous medium, J. Comput. Phys., 375 (2018), pp. 1–21, https://doi.org/10.1016/j.jcp.2018.07.037. · Zbl 1416.76309
[44] P. Saffman, On the boundary condition at the interface of a porous medium, Stud. Appl. Math., 1 (1971), pp. 77–84, https://doi.org/10.1002/sapm197150293.
[45] B. Straughan, Effect of property variation and modelling on convection in a fluid overlying a porous layer, Internat. J. Numer. Anal. Methods Geomech., 26 (2002), pp. 75–97, https://doi.org/10.1002/nag.193. · Zbl 1004.76091
[46] B. Straughan, Resonant porous penetrative convection, Proc. Roy. Soc. London, 460 (2004), pp. 2913–2927, https://doi.org/10.1098/rspa.2004.1292. · Zbl 1329.76344
[47] B. Straughan, The Energy Method, Stability, and Nonlinear Convection, Appl. Math. Sci. 91, Springer, New York, 2013. · Zbl 1032.76001
[48] B. J. Suchomel, B. M. Chen, and M. B. Allen, Network model of flow, transport and biofilm effects in porous media, Transp. Porous Media, 30 (1998), pp. 1–23, https://doi.org/10.1023/A:1006560705680.
[49] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia, 2013. · Zbl 1264.41001
[50] K. Vafai, ed., Handbook of Porous Media, CRC Press, Boca Raton, FL, 2005, https://doi.org/10.1201/9780415876384. · Zbl 1315.76005
[51] WWAP (United Nations World Water Assessment Programme), The United Nations World Water Development Report 2018: Nature-based Solutions for Water, 2018.
[52] J. Zhang and A. Libchaber, Periodic boundary motion in thermal turbulence, Phys. Rev. Lett., 84 (2000), 4361, https://doi.org/10.1103/PhysRevLett.84.4361.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.