Intertemporal choice of fuzzy soft sets. (English) Zbl 1425.91099

Summary: This paper first merges two noteworthy aspects of choice. On the one hand, soft sets and fuzzy soft sets are popular models that have been largely applied to decision making problems, such as real estate valuation, medical diagnosis (glaucoma, prostate cancer, etc.), data mining, or international trade. They provide crisp or fuzzy parameterized descriptions of the universe of alternatives. On the other hand, in many decisions, costs and benefits occur at different points in time. This brings about intertemporal choices, which may involve an indefinitely large number of periods. However, the literature does not provide a model, let alone a solution, to the intertemporal problem when the alternatives are described by (fuzzy) parameterizations. In this paper, we propose a novel soft set inspired model that applies to the intertemporal framework, hence it fills an important gap in the development of fuzzy soft set theory. An algorithm allows the selection of the optimal option in intertemporal choice problems with an infinite time horizon. We illustrate its application with a numerical example involving alternative portfolios of projects that a public administration may undertake. This allows us to establish a pioneering intertemporal model of choice in the framework of extended fuzzy set theories.


91B06 Decision theory
03E72 Theory of fuzzy sets, etc.
Full Text: DOI


[1] Chabris, C.; Laibson, D.; Schuldt, J.; Intertemporal Choice; Palgrave Dictionary of Economics: London, UK 2008; .
[2] Loewenstein, G.; Thaler, R.H.; Anomalies: Intertemporal Choice; J. Econ. Perspect.: 1989; Volume 3 ,181-193.
[3] Price, C.; Investment, reinvestment, and the social discount rate for forestry; For. Ecol. Manag.: 1988; Volume 24 ,293-310.
[4] Dietz, S.; Asheim, G.B.; Climate Policy Under Sustainable Discounted Utilitarianism; J. Environ. Econ. Manag.: 2012; Volume 63 ,321-335.
[5] Hausman, J.A.; Individual Discount Rates and the Purchase and Utilization of Energy-Using Durables; Bell J. Econ.: 1979; Volume 10 ,33-54.
[6] Rambaud, S.C.; Torrecillas, M.J.M.; Takahashi, T.; Observed and Normative Discount Functions in Addiction and other Diseases; Front. Pharmacol.: 2017; Volume 8 ,416.
[7] Field, M.; Santarcangelo, M.; Sumnall, H.; Goudie, A.; Cole, J.; Delay discounting and the behavioural economics of cigarette purchases in smokers: The effects of nicotine deprivation; Psychopharmacology: 2006; Volume 186 ,255-263.
[8] Paserman, M.; Job Search and Hyperbolic Discounting: Structural Estimation and Policy Evaluation; Econ. J.: 2008; Volume 118 ,1418-1452.
[9] O’Donoghue, T.; Rabin, M.; Doing it now or later; Am. Econ. Rev.: 1999; Volume 89 ,103-124.
[10] Chapman, G.B.; Temporal discounting and utility for health and money; J. Exp. Psychol. Learn. Mem. Cogn.: 1996; Volume 22 ,771-791.
[11] Samuelson, P.A.; A Note on Measurement of Utility; Rev. Econ. Stud.: 1937; Volume 4 ,155-161.
[12] Koopmans, T.C.; Stationary Ordinal Utility and Impatience; Econometrica: 1960; Volume 28 ,287-309. · Zbl 0149.38401
[13] Berns, G.S.; Laibson, D.; Loewenstein, G.; Intertemporal choice: toward an integrative framework; Trends Cogn. Sci.: 2007; Volume 11 ,482-488.
[14] Rambaud, S.C.; Torrecillas, M.J.M.; An Analysis of the Anomalies in Traditional Discounting Models; Int. J. Psychol. Psychol. Ther.: 2004; Volume 4 ,105-128.
[15] Thaler, R.; Some empirical evidence on dynamic inconsistency; Econ. Lett.: 1981; Volume 8 ,201-207.
[16] Ainslie, G.; Specious reward: A behavioral theory of impulsiveness and impulse control; Econ. Lett.: 1975; Volume 82 ,463-496.
[17] Commons, M.L.; Mazur, J.E.; Nevin, J.A.E.; Rachlin, H.E.; ; Quantitative Analyses of Behavior: Vol. 5. The Effect of Delay and of Intervening Events on Reinforcement Value: Hillsdale, NJ, USA 1987; ,55-73.
[18] Rachlin, H.; ; Judgment, Decision, and Choice: A Cognitive/Behavioral Synthesis: New York, NY, USA 1989; .
[19] Cajueiro, D.O.; A note on the relevance of the q-exponential function in the context of intertemporal choices; Phys. A Stat. Mech. Its Appl.: 2006; Volume 364 ,385-388.
[20] Rambaud, S.C.; Torrecillas, M.J.M.; A generalization of the q-exponential discounting function; Phys. A Stat. Mech. Its Appl.: 2013; Volume 392 ,3045-3050. · Zbl 1402.91131
[21] Takahashi, T.; A comparison of intertemporal choices for oneself versus someone else based on Tsallis’ statistics; Phys. A Stat. Mech. Its Appl.: 2007; Volume 385 ,637-644.
[22] Chichilnisky, G.; Heal, G.; Social choice with infinite populations: construction of a rule and impossibility results; Soc. Choice Welf.: 1997; Volume 14 ,303-318. · Zbl 0886.90012
[23] Arrow, K.; Cropper, M.; Gollier, C.; Groom, B.; Heal, G.; Newell, R.; Nordhaus, W.; Pindyck, R.; Pizer, W.; Portney, P.; Determining Benefits and Costs for Future Generations; Science: 2013; Volume 341 ,349-350.
[24] ; The Green Book: Appraisal and Evaluation in Central Government: London, UK 2003; .
[25] Baumstark, K.; Hirtzman, P.; Lebegue, D.; ; Revision du taux D’actualisation des Investissements Publics: Paris, France 2005; .
[26] Guide to Cost Benefit Analysis of Investment Projects: Economic Appraisal Tool for Cohesion Policy 2014-2020; ; .
[27] Zadeh, L.; Fuzzy sets; Inf. Control: 1965; Volume 8 ,338-353. · Zbl 0139.24606
[28] Mardani, A.; Jusoh, A.; Zavadskas, E.K.; Fuzzy multiple criteria decision-making techniques and applications—Two decades review from 1994 to 2014; Expert Syst. Appl.: 2015; Volume 42 ,4126-4148.
[29] Tanino, T.; Fuzzy preference orderings in group decision making; Fuzzy Sets Syst.: 1984; Volume 12 ,117-131. · Zbl 0567.90002
[30] Fodor, J.; Roubens, M.; ; Fuzzy Preference Modelling and Multicriteria Decision Support: Alphen aan den Rijn, The Netherlands 1994; . · Zbl 0827.90002
[31] Atanassov, K.; Intuitionistic fuzzy sets; Fuzzy Sets Syst.: 1986; Volume 20 ,87-96. · Zbl 0631.03040
[32] Atanassov, K.T.; More on intuitionistic fuzzy sets; Fuzzy Sets Syst.: 1989; Volume 33 ,37-45. · Zbl 0685.03037
[33] Chen, S.M.; Cheng, S.H.; Chiou, C.H.; Fuzzy multiattribute group decision making based on intuitionistic fuzzy sets and evidential reasoning methodology; Inf. Fusion: 2016; Volume 27 ,215-227.
[34] Wei, G.; Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making; Appl. Soft Comput.: 2010; Volume 10 ,423-431.
[35] De Miguel, L.; Bustince, H.; Fernández, J.; Induráin, E.; Kolesárová, A.; Mesiar, R.; Construction of admissible linear orders for interval-valued Atanassov intuitionistic fuzzy sets with an application to decision making; Inf. Fusion: 2016; Volume 27 ,189-197.
[36] Peng, X.; Selvachandran, G.; Pythagorean fuzzy set: State of the art and future directions; Artif. Intell. Rev.: 2017; .
[37] Peng, X.; Yang, Y.; Fundamental Properties of Interval-Valued Pythagorean Fuzzy Aggregation Operators; Int. J. Intell. Syst.: 2016; Volume 31 ,444-487.
[38] Peng, X.; New Operations for Interval-valued Pythagorean Fuzzy Set; Sci. Iran.: 2018; .
[39] Torra, V.; Hesitant fuzzy sets; Int. J. Intell. Syst.: 2010; Volume 25 ,529-539. · Zbl 1198.03076
[40] Rodríguez, R.; Martínez, L.; Torra, V.; Xu, Z.; Herrera, F.; Hesitant fuzzy sets: state of the art and future directions; Int. J. Intell. Syst.: 2014; Volume 29 ,495-524.
[41] Alcantud, J.C.R.; Torra, V.; Decomposition theorems and extension principles for hesitant fuzzy sets; Inf. Fusion: 2018; Volume 41 ,48-56.
[42] Pawlak, Z.; Rough sets; Int. J. Comput. Inf. Sci.: 1982; Volume 15 ,341-356. · Zbl 0501.68053
[43] Molodtsov, D.; Soft set theory—First results; Comput. Math. Appl.: 1999; Volume 37 ,19-31. · Zbl 0936.03049
[44] Feng, Q.; Zhou, Y.; Soft discernibility matrix and its applications in decision making; Appl. Soft Comput.: 2014; Volume 24 ,749-756.
[45] Alcantud, J.; Some formal relationships among soft sets, fuzzy sets, and their extensions; Int. J. Approx. Reason.: 2016; Volume 68 ,45-53. · Zbl 1346.03046
[46] Ali, M.; A note on soft sets, rough soft sets and fuzzy soft sets; Appl. Soft Comput.: 2011; Volume 11 ,3329-3332.
[47] Feng, F.; Li, C.; Davvaz, B.; Ali, M.; Soft sets combined with fuzzy sets and rough sets: A tentative approach; Soft Comput.: 2010; Volume 14 ,899-911. · Zbl 1201.03046
[48] Feng, F.; Liu, X.; Leoreanu-Fotea, V.; Jun, Y.B.; Soft sets and soft rough sets; Inf. Sci.: 2011; Volume 181 ,1125-1137. · Zbl 1211.68436
[49] Maji, P.; Biswas, R.; Roy, A.; Soft set theory; Comput. Math. Appl.: 2003; Volume 45 ,555-562. · Zbl 1032.03525
[50] Aktaş, H.; Çağman, N.; Soft sets and soft groups; Inf. Sci.: 2007; Volume 177 ,2726-2735. · Zbl 1119.03050
[51] Khameneh, A.Z.; Kılıçman, A.; Multi-attribute decision-making based on soft set theory: A systematic review; Soft Comput.: 2018; . · Zbl 1423.03236
[52] Zhan, J.; Alcantud, J.C.R.; A survey of parameter reduction of soft sets and corresponding algorithms; Artif. Intell. Rev.: 2017; .
[53] Maji, P.; Biswas, R.; Roy, A.; Fuzzy soft sets; J. Fuzzy Math.: 2001; Volume 9 ,589-602. · Zbl 0995.03040
[54] Khameneh, A.Z.; Kılıçman, A.; Parameter Reduction of Fuzzy Soft Sets: An Adjustable Approach Based on the Three-Way Decision; Int. J. Fuzzy Syst.: 2018; Volume 20 ,928-942.
[55] Wang, F.; Li, X.; Chen, X.; Hesitant Fuzzy Soft Set and Its Applications in Multicriteria Decision Making; J. Appl. Math.: 2014; Volume 2014 ,643785.
[56] Alcantud, J.C.R.; Santos-García, G.; A new criterion for soft set based decision making problems under incomplete information; Int. J. Comput. Intell. Syst.: 2017; Volume 10 ,394-404.
[57] Han, B.H.; Li, Y.; Liu, J.; Geng, S.; Li, H.; Elicitation criterions for restricted intersection of two incomplete soft sets; Knowl. Based. Syst.: 2014; Volume 59 ,121-131.
[58] Zou, Y.; Xiao, Z.; Data analysis approaches of soft sets under incomplete information; Knowl. Based. Syst.: 2008; Volume 21 ,941-945.
[59] Deng, T.; Wang, X.; An object-parameter approach to predicting unknown data in incomplete fuzzy soft sets; Appl. Math. Model.: 2013; Volume 37 ,4139-4146.
[60] Liu, Y.; Qin, K.; Rao, C.; Mahamadu, M.A.; Object-parameter Approaches to Predicting Unknown Data in an Incomplete Fuzzy Soft Set; Int. J. Appl. Math. Comput. Sci.: 2017; Volume 27 ,157-167. · Zbl 1368.68297
[61] Roy, A.; Maji, P.; A fuzzy soft set theoretic approach to decision making problems; J. Comput. Appl. Math.: 2007; Volume 203 ,412-418. · Zbl 1128.90536
[62] Alcantud, J.C.R.; A novel algorithm for fuzzy soft set based decision making from multiobserver input parameter data set; Inf. Fusion: 2016; Volume 29 ,142-148.
[63] Liu, Y.; Qin, K.; Martínez, L.; Improving decision making approaches based on fuzzy soft sets and rough soft sets; Appl. Soft Comput.: 2018; Volume 65 ,320-332.
[64] Feng, F.; Jun, Y.; Liu, X.; Li, L.; An adjustable approach to fuzzy soft set based decision making; J. Comput. Appl. Math.: 2010; Volume 234 ,10-20. · Zbl 1274.03082
[65] Kong, Z.; Gao, L.; Wang, L.; Comment on “A fuzzy soft set theoretic approach to decision making problems”; J. Comput. Appl. Math.: 2009; Volume 223 ,540-542. · Zbl 1159.90421
[66] Liu, Z.; Qin, K.; Pei, Z.; A Method for Fuzzy Soft Sets in Decision-Making Based on an Ideal Solution; Symmetry: 2017; Volume 9 . · Zbl 1425.91118
[67] Feng, Q.; Guo, X.; A Novel Approach to Fuzzy Soft Set-Based Group Decision-Making; Complexity: 2018; Volume 2018 ,2501489. · Zbl 1398.91179
[68] Peng, X.; Dai, J.; Yuan, H.; Interval-valued Fuzzy Soft Decision Making Methods Based on MABAC, Similarity Measure and EDAS; Fundam. Inform.: 2017; Volume 152 ,373-396. · Zbl 1375.68108
[69] Park, J.H.; Kwun, Y.C.; Son, M.J.; A generalized intuitionistic fuzzy soft set theoretic approach to decision making problems; Int. J. Fuzzy Log. Intell. Syst.: 2011; Volume 11 ,71-76.
[70] Park, J.; Operations on generalized intuitionistic fuzzy soft sets; Int. J. Fuzzy Log. Intell. Syst.: 2011; Volume 11 ,184-189.
[71] Zhan, J.; Wang, Q.; Certain types of soft coverings based rough sets with applications; Int. J. Mach. Learn. Cybern.: 2018; .
[72] Zhan, J.; Alcantud, J.C.R.; A novel type of soft rough covering and its application to multicriteria group decision making; Artif. Intell. Rev.: 2018; .
[73] Ma, X.; Zhan, J.; Ali, M.I.; Mehmood, N.; A survey of decision making methods based on two classes of hybrid soft set models; Artif. Intell. Rev.: 2018; Volume 49 ,511-529.
[74] Fatimah, F.; Rosadi, D.; Hakim, R.F.; Alcantud, J.C.R.; Probabilistic soft sets and dual probabilistic soft sets in decision-making; Neural Comput. Appl.: 2017; . · Zbl 1398.03176
[75] Maji, P.; Biswas, R.; Roy, A.; An application of soft sets in a decision making problem; Comput. Math. Appl.: 2002; Volume 44 ,1077-1083. · Zbl 1044.90042
[76] Çağman, N.; Enginoğlu, S.; Soft set theory and uni-int decision making; Eur. J. Oper. Res.: 2010; Volume 207 ,848-855. · Zbl 1205.91049
[77] Golabi, K.; Kirkwood, C.W.; Sicherman, A.; Selecting a Portfolio of Solar Energy Projects Using Multiattribute Preference Theory; Manag. Sci.: 1981; Volume 27 ,174-189.
[78] Liu, K.F.R.; Yu, C.W.; Integrating case-based and fuzzy reasoning to qualitatively predict risk in an environmental impact assessment review; Environ. Model. Softw.: 2009; Volume 24 ,1241-1251.
[79] Christoffersen, P.F.; ; Elements of Financial Risk Management: Cambridge, MA, USA 2012; . · Zbl 1250.91002
[80] Alcantud, J.C.R.; Mathew, T.J.; Separable fuzzy soft sets and decision making with positive and negative attributes; Appl. Soft Comput.: 2017; Volume 59 ,586-595.
[81] Alcantud, J.C.R.; Inequality averse criteria for evaluating infinite utility streams: The impossibility of Weak Pareto; J. Econ. Theory: 2012; Volume 147 ,353-363. · Zbl 1258.91054
[82] Alcantud, J.C.R.; García-Sanz, M.D.; Paretian evaluation of infinite utility streams: An egalitarian criterion; Econ. Lett.: 2010; Volume 106 ,209-211. · Zbl 1203.91073
[83] Basu, K.; Mitra, T.; Aggregating Infinite Utility Streams with Intergenerational Equity: The Impossibility of Being Paretian; Econometrica: 2003; Volume 71 ,1557-1563. · Zbl 1153.91648
[84] Ramsey, F.P.; A Mathematical Theory of Saving; Econ. J.: 1928; Volume 38 ,543-559.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.