×

zbMATH — the first resource for mathematics

Essential norm of weighted composition operators from analytic Besov spaces into Zygmund type spaces. (English) Zbl 1426.30041
J. Contemp. Math. Anal., Armen. Acad. Sci. 54, No. 3, 129-142 (2019) and Izv. Nats. Akad. Nauk Armen., Mat. 54, No. 3, 16-34 (2019).
Summary: In this paper, we give some estimates for the essential norm of weighted composition operators from analytic Besov spaces into Zygmund type spaces. In particular, a new characterization for the boundedness and compactness of the weighted composition operators \(uC _ \varphi\) is obtained.

MSC:
30H25 Besov spaces and \(Q_p\)-spaces
30H99 Spaces and algebras of analytic functions of one complex variable
47B33 Linear composition operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Choe, B.; Koo, H.; Smith, W., Composition operators on small spaces, Integral Equations Oper. Theory, 56, 357-380, (2006) · Zbl 1114.47028
[2] C. Cowen and B. Maccluer, Composition Operators on Spaces of Analytic Functions (CRC Press, Boca Raton, FL, 1995). · Zbl 0873.47017
[3] Colonna, F., New criteria for boundedness and compactness of weighted composition operators mapping into the Bloch space, Cent. Eur. J. Math., 11, 55-73, (2013) · Zbl 1279.47041
[4] Colonna, F.; Li, S., Weighted composition operators from the Besov spaces to the Bloch spaces, Bull. Malays. Math. Sci. Soc., 36, 1027-1039, (2013) · Zbl 06233329
[5] F. Colonna and S. Li, “Weighted composition operators from the Bloch space and the analytic Besov spaces into the Zygmund space”, J. Operators, ID 154029-154038, 2013. · Zbl 1323.47026
[6] Colonna, F.; Li, S., Weighted composition operators from the Lipschtiz space into the Zygmund space, Math. Ineq. Appl., 17, 963-975, (2014) · Zbl 1312.47028
[7] Colonna, F.; Tjani, M., Weighted composition operators from the Besov spaces into Lipschtiz space into the weighted-type space \(H_μ^∞\), J. Math. Anal. Appl., 402, 594-611, (2013) · Zbl 1282.47031
[8] Esmaeili, K.; Lindström, M., Weighted composition operators between Zygmund type spaces and their essential norms, Integral Equations Oper. Theory, 75, 473-490, (2013) · Zbl 1306.47036
[9] Hu, Q.; Ye, S., Weighted composition operators on the Zygmund spaces, 462-482, (2012)
[10] Hyvärinen, O.; Kemppainen, M.; Lindström, M.; Rautio, A.; Saukko, E., The essential norm of weighted composition operators on weighted Banach spaces of analytic functions, Integral Equations Oper. Theory, 72, 151-157, (2012) · Zbl 1252.47026
[11] Hyvärinen, O.; Lindström, M., Estimates of essential norm of weighted composition operators between Bloch-type spaces, J. Math. Anal. Appl., 393, 38-44, (2012) · Zbl 1267.47040
[12] Li, H.; Fu, X., A new characterization of generalized weighted composition operators from the Bloch space into the Zygmund space, 925901-925913, (2013) · Zbl 1383.47003
[13] Li, S.; Stević, S., Volterra type operators on Zygmund spaces, 32124-32134, (2007) · Zbl 1146.30303
[14] Li, S.; Stević, S., Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl., 338, 1282-1295, (2008) · Zbl 1135.47021
[15] Li, S.; Stević, S., Weighted composition operators from Zygmund spaces into Bloch spaces, Appl. Math. Comput., 206, 825-831, (2008) · Zbl 1215.47022
[16] Li, S.; Stević, S., Products of composition and differentiation operators from Zygmund spaces to Bloch spaces and Bers spaces, Appl. Math. Comput., 217, 3144-3154, (2010) · Zbl 1204.30046
[17] Liu, X.; Li, S., Norm and essential norm of a weighted composition operator on the Bloch space, Integr. Equ. Oper. Theory, 87, 309-325, (2017) · Zbl 1372.30059
[18] Maccluer, B.; Zhao, R., Essential norm of weighted composition operators between Bloch-type spaces, Rocky. Mountain J. Math., 33, 1437-1458, (2003) · Zbl 1061.30023
[19] Madigan, K.; Matheson, A., Compact composition operators on the Bloch space, Trans. Amer. Math. Soc., 347, 2679-2687, (1995) · Zbl 0826.47023
[20] Montes-Rodriguez, A., The essential norm of composition operators on the Bloch space, Pacific J. Math., 188, 339-351, (1999) · Zbl 0932.30034
[21] Montes-Rodriguez, A., Weighed composition operators on weighted Banach spaces of analytic functions, J. London Math. Soc., 61, 872-884, (2000) · Zbl 0959.47016
[22] Ohno, S.; Stroethoff, K.; Zhao, R., Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math., 33, 191-215, (2003) · Zbl 1042.47018
[23] Stević, S., Weighted differentiation composition operators from \(H^∞\) and Bloch spaces to \(n\) th weigthed-type spaces on the unit disk, Appl. Math. Comput., 216, 3634-3641, (2010) · Zbl 1195.30073
[24] M. Tjani, Compact composition operators on some Miöbius invariant Banach spaces, PhD dissertation (Michigan State University, Detroit, 1996).
[25] Wulan, H.; Zheng, D.; Zhu, K., Compact composition operators on BMOA and the Bloch space, Proc. Amer. Math. Soc., 137, 3861-3868, (2009) · Zbl 1194.47038
[26] Yu, Y.; Liu, Y., Weighted differentiation composition operators from \(H^∞\) to Zygmund spaces, Integ. Trans. Spec. Funct., 22, 507-520, (2011) · Zbl 1225.47036
[27] Zhao, R., Essential norms of composition operators between Bloch type spaces, Proc. Amer. Math. Soc., 138, 2537-2546, (2010) · Zbl 1190.47028
[28] K. Zhu, Operator Theory in Function Spaces (Amer. Math. Soc., Providence, 2007). · Zbl 1123.47001
[29] Zhu, X., Generalized weighted composition operators on Bloch-type spaces, J. Ineq. Appl., 2015, 59-68, (2015) · Zbl 1309.47027
[30] Zhu, X., Essential norm of generalized weighted composition operators on Bloch-type spaces, Appl. Math. Comput., 274, 133-142, (2016) · Zbl 1410.30032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.