×

zbMATH — the first resource for mathematics

On the plastic anisotropy of an aluminium alloy and its influence on constrained multiaxial flow. (English) Zbl 1426.74069
Summary: The influence of plastic anisotropy on the mechanical behaviour of a rolled aluminium plate under quasi-static loading conditions is studied experimentally and numerically. Material tests in different directions with respect to the rolling direction of the plate were carried out on various specimen shapes providing a wide range of stress states. The Yld2004-18p anisotropic yield function was identified through uniaxial tensile tests, shear tests and upsetting tests. This yield function was found to provide an adequate description of the significant anisotropic behaviour of a high-strength AA7075-T651 plate. Numerical simulations of all the material tests were then performed with an elasto-plastic material model using both the anisotropic and an isotropic version of the yield function. The numerical predictions of the mechanical response for notched tensile tests obtained with the isotropic version of the material model clearly over-estimated the experimental results. Similar results have been reported in the literature on other materials using isotropic constitutive relations. This over-estimation was significantly reduced when using the anisotropic version of the material model, and the reason why plastic anisotropy is so important for an accurate prediction of the notch-strengthening effect is explained. It was also established that the exponent of the yield function Yld2004-18p has a strong influence on the results for the notched tensile tests. When the exponent of the yield surface was assigned a sufficiently high value, an almost perfect fit between the numerical predictions and the experimental results was obtained.

MSC:
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74E10 Anisotropy in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74-05 Experimental work for problems pertaining to mechanics of deformable solids
Software:
LS-DYNA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, T. L.: Fracture mechanics (Fundamentals and applications), (1991) · Zbl 0999.74001
[2] Aretz, H.; Hopperstad, O. S.; Lademo, O. G.: Yield function calibration for orthotropic sheet metals based on uniaxial and plane strain tensile tests, Journal of materials processing technology 186, 221-235 (2007)
[3] Arminjon, M.; Bacroix, B.: On plastic potentials for anisotropic metals and their derivation from the texture function, Acta mechanica 88, 219-243 (1991) · Zbl 0729.73816 · doi:10.1007/BF01177098
[4] Arminjon, M.; Bacroix, B.; Imbault, D.; Raphanel, J. L.: A fourth-order plastic potential for anisotropic metals and its analytical calculation from the texture function, Acta mechanica 107, 33-51 (1994) · Zbl 0848.73005 · doi:10.1007/BF01201818
[5] Bai, Y.; Wierzbicki, T.: A new metal plasticity and fracture with pressure and lode dependence, International journal of plasticity 24, 1071-1096 (2008) · Zbl 1421.74016
[6] Bao, Y.; Wierzbicki, T.: On fracture locus in the equivalent strain and stress triaxiality space, International journal of mechanical sciences 46, 81-98 (2004)
[7] Barlat, F.; Lege, D.; Brem, J. C.: Six-component yield function for anisotropic materials, International journal of plasticity 7, 693-712 (1991)
[8] Barlat, F.; Chung, K.: Anisotropic potentials for plastically deformation metals, Modelling and simulation in material science and engineering 1, 403-416 (1993)
[9] Barlat, F.; Brem, J. C.; Yoon, J. W.; Chung, K.; Dick, R. E.; Lege, D. J.; Pourboghrat, F.; Choi, S. -H.; Chu, E.: Plane stress yield function for aluminum alloy sheets – part 1: theory, International journal of plasticity 19, 1297-1319 (2003) · Zbl 1114.74370 · doi:10.1016/S0749-6419(02)00019-0
[10] Barlat, F.; Aretz, H.; Yoon, J. W.; Karabin, M. E.; Brem, J. C.; Dick, R. E.: Linear transformation-based anisotropic yield functions, International journal of plasticity 21, 1009-1039 (2005) · Zbl 1161.74328 · doi:10.1016/j.ijplas.2004.06.004
[11] Belytschko, T.; Liu, W. K.; Moran, B.: Nonlinear finite elements for continua and structures, (2000) · Zbl 0959.74001
[12] Bron, F.; Besson, J.: A yield function for anisotropic materials – application to aluminum alloys, International journal of plasticity 20, 937-963 (2004) · Zbl 1254.74105
[13] Brownrigg, A.; Spitzig, W. A.; Richmond, O.; Teirlinck, D.; Embury, J. D.: The influence of hydrostatic pressure on the flow stress and ductility of a spherodized 1045 steel, Acta metallurgica 31, 1141-1150 (1983)
[14] Brünig, M.: Numerical simulation of the large elastic – plastic deformation behavior of hydrostatic stress-sensitive solids, International journal of plasticity 15, 1237-1264 (1999) · Zbl 0996.74016 · doi:10.1016/S0749-6419(99)00042-X
[15] Børvik, T.; Hopperstad, O. S.; Pedersen, K. O.: Quasi-brittle fracture during structural impact of AA7075-T651 aluminium plates, International journal of impact engineering 37, 537-551 (2010)
[16] Chen, Y.; Pedersen, K. O.; Clausen, A. H.; Hopperstad, O. S.: An experimental study on the dynamic fracture of extruded aa6xxx and aa7xxx aluminium alloys, Materials science and engineering A 523, 253-262 (2009)
[17] Choi, Y.; Han, C. S.; Lee, J. K.; Wagoner, R. H.: Modelling multiaxial deformation of planar anisotropic elasto-plastic materials, part I: Theory, International journal of plasticity 22, 1745-1764 (2006) · Zbl 1294.74025
[18] Darrieulat, M.; Montheillet, F.: A texture based continuum approach for predicting the plastic behaviour of rolled sheet, International journal of plasticity 19, 517-546 (2003) · Zbl 1090.74530 · doi:10.1016/S0749-6419(01)00071-7
[19] Eriksson, M., Lademo, O.G., Hopperstad, O.S., 2006. Development and use of in-plane shear tests to identify ductile failure parameters of aluminium alloys. In: Proceedings of 9th International Conference on Material Forming (ESAFORM-2006), Glasgow, pp. 331 – 334.
[20] Freed, A. D.; Sandor, B. I.: The plastic compressibility of 7075-T651 aluminum-alloy plate, Experimental mechanics 26, 119-121 (1985)
[21] Grytten, F.: Evaluation of identification methods for yld2004-18p, International journal of plasticity 14, 2248-2277 (2008) · Zbl 1421.74005
[22] Hill, R.: A theory of the yielding and plastic flow of anisotropic metals, Proceedings of the royal society of London series A, mathematical and physical sciences 193, 281-297 (1948) · Zbl 0032.08805 · doi:10.1098/rspa.1948.0045
[23] Hill, R.: Theoretical plasticity of textured aggregates, Mathematical Proceedings of the Cambridge philosophical society 85, 179-191 (1979) · Zbl 0388.73029 · doi:10.1017/S0305004100055596
[24] Hill, R.: Constitutive dual potentials in classical plasticity, Journal of mechanics and physics of solids 35, 22-33 (1987) · Zbl 0598.73028 · doi:10.1016/0022-5096(87)90025-1
[25] Hill, R.: Constitutive modelling of orthotropic plasticity in sheet metals, Journal of the mechanics and physics of solids 38, 405-417 (1990) · Zbl 0713.73044 · doi:10.1016/0022-5096(90)90006-P
[26] Hosford, W. F.: A generalized isotropic yield criterion, Journal of applied mechanics 39, 607-609 (1972)
[27] Hosford, W. F.: On the crystallographic basis of yield criteria, Textures and microstructures 26 – 27, 479-493 (1996)
[28] Hu, W.: Constitutive modeling of orthotropic sheet metals by presenting hardening-induced anisotropy, International journal of plasticity 23, 620-639 (2007) · Zbl 1110.74017 · doi:10.1016/j.ijplas.2006.08.004
[29] Karafillis, A. P.; Boyce, M. C.: A general anisotropic yield criterion using bounds and a transformation weighting tensor, Journal of mechanics and physics of solids 41, 1859-1886 (1993) · Zbl 0792.73029 · doi:10.1016/0022-5096(93)90073-O
[30] Kim, D.; Barlat, F.; Bouvier, S.; Rabahallah, M.; Balan, T.; Chung, K.: Non-quadratic anisotropic potential based on linear transformation of plastic strain rate, International journal of plasticity 23, 1380-1399 (2007) · Zbl 1134.74327 · doi:10.1016/j.ijplas.2007.01.006
[31] Leacock, A. G.: A mathematical description of orthotropy in sheet metals, Journal of the mechanics and physics of solids 54, 425-444 (2006) · Zbl 1120.74385 · doi:10.1016/j.jmps.2005.08.008
[32] Lopes, A. B.; Barlat, F.; Gracio, J. J.; Duarte, J. F. Ferreira; Rauch, E. F.: Effect of texture and microstructure on strain hardening anisotropy for aluminium deformed in uniaxial tension and simple shear, International journal of plasticity 19, 1-22 (2003) · Zbl 1032.74503 · doi:10.1016/S0749-6419(01)00016-X
[33] LSTC, LS-DYNA Keyword User’s Manual, Version 971, 2007. Livermore Software Technology Corporation, California.
[34] Monchiet, V.; Cazacu, O.; Charkaluk, E.; Kondo, D.: Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids, International journal of plasticity 24, 1158-1189 (2008) · Zbl 1421.74023
[35] Pedersen, K. O.; Børvik, T.; Hopperstad, O. S.: Fracture mechanisms of aluminium alloy AA7075-T651 under various loading conditions, Material and design 32, 97-107 (2011)
[36] Richmond, O.; Spitzig, W. A.: Pressure dependence and dilatancy of plastic flow, Theoretical and applied mechanics 15, 377-386 (1980)
[37] Rousselier, G.; Barlat, F.; Yoon, J. W.: A novel approach for anisotropic hardening modeling. Part II: A novel approach for anisotropic hardening modeling. Part II: Anisotropic hardening in proportional and non-proportional loadings, application to initially isotropic material, International journal of plasticity 26, 1029-1049 (2010) · Zbl 1426.74061
[38] Soare, S.; Barlat, F.: Convex polynomial yield functions, Journal of the mechanics and physics of solids 58, 1804-1818 (2010) · Zbl 1225.74017 · doi:10.1016/j.jmps.2010.08.005
[39] Spitzig, W. A.; Richmond, O.: The effect of pressure on the flow stress of metals, Acta metallurgica 32, 457-463 (1984)
[40] Steglich, D.; Brocks, W.; Heerens, J.; Pardoen, T.: Anisotropic ductile fracture of al 2024 alloys, Engineering fracture mechanics 75, 3692-3706 (2008)
[41] Stoughton, T. B.; Yoon, J. W.: Anisotropic hardening and non-associated flow in proportional loading of sheet metals, International journal of plasticity 25, 1777-1817 (2009) · Zbl 1168.74016 · doi:10.1016/j.ijplas.2009.02.003
[42] Thomason, P. F.: Ductile fracture of metals, (1990)
[43] Van Houtte, P.; Mols, K.; Van Bael, A.; Aernoudt, E.: Application of yield loci calculated from texture data, Textures and microstructures 11, 23-39 (1989)
[44] Van Houtte, P.; Van Bael, A.: Convex plastic potentials of fourth and sixth rank for anisotropic materials, International journal of plasticity 20, 1505-1524 (2004) · Zbl 1066.74518 · doi:10.1016/j.ijplas.2003.11.005
[45] Wilson, C. D.: A critical reexamination of classical metal plasticity, The journal of applied mechanics 69, 63-68 (2002) · Zbl 1110.74755 · doi:10.1115/1.1412239
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.