×

Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow. (English) Zbl 1426.74232

Summary: In this paper we introduce and analyze a new mixed finite element method for the two-dimensional Brinkman model of porous media flow with mixed boundary conditions. We use a dual-mixed formulation in which the main unknown is given by the pseudostress. The original velocity and pressure unknowns are easily recovered through a simple postprocessing. In addition, since the Neumann boundary condition becomes essential, we impose it in a weak sense, which yields the introduction of the trace of the fluid velocity over the Neumann boundary as the associated Lagrange multiplier. We apply the Babuška-Brezzi theory to establish sufficient conditions for the well-posedness of the resulting continuous and discrete formulations. In particular, a feasible choice of finite element subspaces is given by Raviart-Thomas elements of order \(k\geq 0\) for the pseudostress, and continuous piecewise polynomials of degree \(k+1\) for the Lagrange multiplier. We also derive a reliable and efficient residual-based a posteriori error estimator for this problem. Suitable auxiliary problems, the continuous inf-sup conditions satisfied by the bilinear forms involved, a discrete Helmholtz decomposition, and the local approximation properties of the Raviart-Thomas and Clément interpolation operators are the main tools for proving the reliability. Then, Helmholtz’s decomposition, inverse inequalities, and the localization technique based on triangle-bubble and edge-bubble functions are employed to show the efficiency. Finally, several numerical results illustrating the performance and the robustness of the method, confirming the theoretical properties of the estimator, and showing the behaviour of the associated adaptive algorithm, are provided.

MSC:

74M10 Friction in solid mechanics
76S05 Flows in porous media; filtration; seepage
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Agmon, S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton (1965) · Zbl 0142.37401
[2] Arnold, DN, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19, 742-760, (1982) · Zbl 0482.65060
[3] Arnold, DN; Brezzi, F; Douglas, J, PEERS: a new mixed finite element method for plane elasticity, Jpn. J. Appl. Math., 1, 347-367, (1984) · Zbl 0633.73074
[4] Arnold, DN; Douglas, J; Gupta, ChP, A family of higher order mixed finite element methods for plane elasticity, Numer. Math., 45, 1-22, (1984) · Zbl 0558.73066
[5] Babuška, I; Aziz, AK; Aziz, AK (ed.), Survey lectures on the mathematical foundations of the finite element method, (1972), New York
[6] Babuška, I; Gatica, GN, On the mixed finite element method with Lagrange multipliers, Numer. Methods Partial Differ. Equ., 19, 192-210, (2003) · Zbl 1021.65056
[7] Barrios, TP; Gatica, GN; González, M; Heuer, N, A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity, ESAIM Math. Model. Numer. Anal., 40, 843-869, (2006) · Zbl 1109.74047
[8] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991) · Zbl 0788.73002
[9] Burman, E; Hansbo, P, A unified stabilized method for stokes’ and darcy’s equations, J. Comput. Appl. Math., 198, 35-51, (2007) · Zbl 1101.76032
[10] Cai, Z; Lee, B; Wang, P, Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems, SIAM J. Numer. Anal., 42, 843-859, (2004) · Zbl 1159.76347
[11] Cai, Z; Starke, G, Least-squares methods for linear elasticity, SIAM J. Numer. Anal., 42, 826-842, (2004) · Zbl 1159.74419
[12] Cai, Z; Tong, Ch; Vassilevski, PS; Wang, Ch, Mixed finite element methods for incompressible flow: stationary Stokes equations, Numer Methods Partial Differ. Equ., 26, 957-978, (2009) · Zbl 1267.76059
[13] Carstensen, C, An a posteriori error estimate for a first-kind integral equation, Math. Comput., 66, 139-155, (1997) · Zbl 0854.65102
[14] Carstensen, C, A posteriori error estimate for the mixed finite element method, Math. Comput., 66, 465-478, (1997) · Zbl 0864.65068
[15] Carstensen, C; Dolzmann, G, A posteriori error estimates for mixed FEM in elasticity, Numer. Math., 81, 187-209, (1998) · Zbl 0928.74093
[16] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978) · Zbl 0383.65058
[17] Clément, P, Approximation by finite element functions using local regularisation, RAIRO Model. Math. et Anal. Numer., 9, 77-84, (1975) · Zbl 0368.65008
[18] Ervin, VJ; Howell, JS; Stanculescu, I, A dual-mixed approximation method for a three-field model of a nonlinear generalized Stokes problem, Comput. Methods Appl. Mech. Eng., 197, 2886-2900, (2008) · Zbl 1194.76114
[19] Figueroa, L; Gatica, GN; Heuer, N, A priori and a posteriori error analysis of an augmented mixed finite element method for incompressible fluid flows, Comput. Methods Appl. Mech. Eng., 198, 280-291, (2008) · Zbl 1194.76115
[20] Figueroa, LE; Gatica, GN; Márquez, A, Augmented mixed finite element methods for the stationary Stokes equations, SIAM J. Sci. Comput., 31, 1082-1119, (2008) · Zbl 1251.74032
[21] Gatica, GN, A note on the efficiency of residual-based a-posteriori error estimators for some mixed finite element methods, Electron. Trans. Numer. Anal., 17, 218-233, (2004) · Zbl 1065.65125
[22] Gatica, GN, Analysis of a new augmented mixed finite element method for linear elasticity allowing \(\mathbb{RT}_0-\mathbb{P}_1-\mathbb{P}_0\) approximations, ESAIM Math. Model. Numer. Anal., 40, 1-28, (2006) · Zbl 1330.74155
[23] Gatica, GN; González, M; Meddahi, S, A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. I: a priori error analysis, Comput. Methods Appl. Mech. Eng., 193, 881-892, (2004) · Zbl 1053.76037
[24] Gatica, GN; Hsiao, G; Meddahi, S, A residual-based a posteriori error estimator for a two-dimensional fluid-solid interaction problem, Numer. Math., 114, 63-106, (2009) · Zbl 1247.76051
[25] Gatica, GN; Márquez, A; Meddahi, S, An augmented mixed finite element method for 3D linear elasticity problems, J. Comput. Appl. Math., 231, 526-540, (2009) · Zbl 1167.74042
[26] Gatica, GN; Márquez, A; Sánchez, M, Analysis of a velocity-pressure-pseudostress formulation for the stationary Stokes equations, Comput. Methods Appl. Mech. Eng., 199, 1064-1079, (2010) · Zbl 1227.76030
[27] Gatica, GN; Márquez, A; Sánchez, M, A priori and a posteriori error analyses of a velocity-pseudostress formulation for a class of quasi-Newtonian Stokes flows, Comput. Methods Appl. Mech. Eng., 200, 1619-1636, (2011) · Zbl 1228.76084
[28] Gatica, GN; Oyarzúa, R; Sayas, FJ, Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem, Math. Comput., 80, 1911-1948, (2011) · Zbl 1301.76047
[29] Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations. In: Theory and Algorithms. Springer, Berlin (1986) · Zbl 0585.65077
[30] Hansbo, P; Juntunen, M, Weakly imposed Dirichlet boundary conditions for the Brinkman model of porous media flow, Appl. Numer. Math., 59, 1274-1289, (2009) · Zbl 1162.76056
[31] Hiptmair, R, Finite elements in computational electromagnetism, Acta Numer., 11, 237-339, (2002) · Zbl 1123.78320
[32] Howell, JS, Dual-mixed finite element approximation of Stokes and nonlinear Stokes problems using trace-free velocity gradients, J. Comput. Appl. Math., 231, 780-792, (2009) · Zbl 1167.76021
[33] Juntunen, M; Stenberg, R, Analysis of finite element methods for the Brinkman problem, Calcolo, 47, 129-147, (2010) · Zbl 1410.76179
[34] Lions, J.-L., Magenes, E.: Problèmes aux Limites non Homogènes et Applications I. Dunod, Paris (1968) · Zbl 0165.10801
[35] Mc Lean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, London (2000)
[36] Márquez, A., Meddahi, S., Sayas, F.-J.: Strong coupling of finite element methods for the Stokes-Darcy problem. arXiv:1203.4717v1[math.NA] · Zbl 1123.78320
[37] Nečas, J.: Les Méthodes Directes en Théorie des Équations Elliptiques. Masson, Paris (1967) · Zbl 1225.35003
[38] Prössdorf, S., Silbermann, B.: Numerical Analysis for Integral and Related Operator Equations. Birkhäuser, Basel (1991) · Zbl 0763.65103
[39] Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Heidelberg (1996) · Zbl 1151.65339
[40] Roberts, J.E., Thomas, J.M.: Mixed and hybrid methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis. Finite Element Methods (Part 1), vol. II. Nort-Holland, Amsterdam (1991)
[41] Verfürth, R, A posteriori error estimation and adaptive-mesh-refinement techniques, J. Comput. Appl. Math., 50, 67-83, (1994) · Zbl 0811.65089
[42] Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive-Mesh-Refinement Techniques. Wiley, Chichester (1996) · Zbl 1101.76032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.