×

Spin symmetry breaking in the translation-invariant Hartree-Fock electron gas. (English) Zbl 1426.82061

Summary: We study the breaking of spin symmetry for the nonlinear Hartree-Fock model describing an infinite translation-invariant interacting quantum gas (fluid phase). At zero temperature and for the Coulomb interaction in three space dimensions, we can prove the existence of a unique first order transition between a pure ferromagnetic phase at low density and a paramagnetic phase at high density. Multiple first or second order transitions can happen for other interaction potentials, as we illustrate on some examples. At positive temperature \(T>0\) we compute numerically the phase diagram in the Coulomb case. We find the paramagnetic phase at high temperature or high density and a region where the system is ferromagnetic. We prove that the equilibrium state is unique and paramagnetic at high temperature or high density.

MSC:

82D05 Statistical mechanics of gases
81R40 Symmetry breaking in quantum theory
45G10 Other nonlinear integral equations
35Q40 PDEs in connection with quantum mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] L. Baguet, Etats périodiques du Jellium à deux et trois dimensions: Approximation de Hartree-Fock, Ph.D. thesis, Université Pierre et Marie Curie, 2014, https://tel.archives-ouvertes.fr/tel-01127918.
[2] L. Baguet, F. Delyon, B. Bernu, and M. Holzmann, Hartree-Fock ground state phase diagram of Jellium, Phys. Rev. Lett., 111 (2013), 166402, https://doi.org/10.1103/PhysRevLett.111.166402.
[3] L. Baguet, F. Delyon, B. Bernu, and M. Holzmann, Properties of Hartree-Fock solutions of the three-dimensional electron gas, Phys. Rev. B, 90 (2014), 165131, https://doi.org/10.1103/PhysRevB.90.165131.
[4] A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98 (1993), pp. 5648-5652, https://doi.org/10.1063/1.464913.
[5] B. Bernu, F. Delyon, M. Holzmann, and L. Baguet, Hartree-Fock phase diagram of the two-dimensional electron gas, Phys. Rev. B, 84 (2011), 115115, https://doi.org/10.1103/PhysRevB.84.115115.
[6] F. E. Browder and C. Gupta, Monotone operators and nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc, 75 (1969), pp. 1347-1353, https://doi.org/10.1090/S0002-9904-1969-12420-1. · Zbl 0193.11204
[7] É. Cancès, H. Galicher, and M. Lewin, Computing electronic structures: A new multiconfiguration approach for excited states, J. Comput. Phys., 212 (2006), pp. 73-98, https://doi.org/10.1016/j.jcp.2005.06.015. · Zbl 1078.81078
[8] R. L. Frank, C. Hainzl, S. Naboko, and R. Seiringer, The critical temperature for the BCS equation at weak coupling, J. Geom. Anal., 17 (2007), pp. 559-567, https://doi.org/10.1007/BF02937429. · Zbl 1137.82025
[9] A. Freiji, C. Hainzl, and R. Seiringer, The gap equation for spin-polarized fermions, J. Math. Phys., 53 (2012), 012101, https://doi.org/10.1063/1.3670747. · Zbl 1273.82012
[10] B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \({R}^n \), in Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud. 7, Academic Press, New York, London, 1981, pp. 369-402, https://ci.nii.ac.jp/naid/10018380567/. · Zbl 0469.35052
[11] G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid, Cambridge University Press, Cambridge, UK, 2005, https://doi.org/10.1017/CBO9780511619915.
[12] D. Gontier, C. Hainzl, and M. Lewin, Lower bound on the Hartree-Fock energy of the electron gas, Phys. Rev. A, 99 (2019), 052501, https://doi.org/10.1103/PhysRevA.99.052501.
[13] C. Hainzl, E. Hamza, R. Seiringer, and J. P. Solovej, The BCS functional for general pair interactions, Comm. Math. Phys., 281 (2008), pp. 349-367, https://doi.org/10.1007/s00220-008-0489-2. · Zbl 1161.82027
[14] C. Hainzl, M. Lewin, and R. Seiringer, A nonlinear model for relativistic electrons at positive temperature, Rev. Math. Phys., 20 (2008), pp. 1283-1307, https://doi.org/10.1142/S0129055X08003547. · Zbl 1156.81372
[15] C. Hainzl and M. Loss, General pairing mechanisms in the BCS-theory of superconductivity, Eur. Phys. J. B, 90 (2017), 82, https://doi.org/10.1140/epjb/e2017-70318-3.
[16] C. Hainzl and R. Seiringer, Critical temperature and energy gap for the BCS equation, Phys. Rev. B, 77 (2008), 184517, https://doi.org/10.1103/PhysRevB.77.184517. · Zbl 1156.82413
[17] C. Hainzl and R. Seiringer, Asymptotic behavior of eigenvalues of Schrödinger type operators with degenerate kinetic energy, Math. Nachr., 283 (2010), pp. 489-499, https://doi.org/10.1002/mana.200810195. · Zbl 1193.58003
[18] C. Hainzl and R. Seiringer, The Bardeen-Cooper-Schrieffer functional of superconductivity and its mathematical properties, J. Math. Phys., 57 (2016), 021101 https://doi.org/10.1063/1.4941723,. · Zbl 1360.81315
[19] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev., 136 (1964), pp. B864-B871, https://doi.org/10.1103/PhysRev.136.B864.
[20] W. G. Hoover, D. A. Young, and R. Grover, Statistical mechanics of phase diagrams. I. Inverse power potentials and the close-packed to body-centered cubic transition, J. Chem. Phys., 56 (1972), pp. 2207-2210, https://doi.org/10.1063/1.1677521.
[21] S. Huotari, J. A. Soininen, T. Pylkkänen, K. Hämäläinen, A. Issolah, A. Titov, J. McMinis, J. Kim, K. Esler, D. M. Ceperley, M. Holzmann, and V. Olevano, Momentum distribution and renormalization factor in sodium and the electron gas, Phys. Rev. Lett., 105 (2010), 086403, https://doi.org/10.1103/PhysRevLett.105.086403.
[22] W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. (2), 140 (1965), pp. A1133-A1138, https://doi.org/10.1103/PhysRev.140.A1133.
[23] A. Laptev, O. Safronov, and T. Weidl, Bound state asymptotics for elliptic operators with strongly degenerated symbols, in Nonlinear Problems in Mathematical Physics and Related Topics, I, Int. Math. Ser. (N. Y.) 1 , Kluwer/Plenum, New York, 2002, pp. 233-246, https://doi.org/10.1007/978-1-4615-0777-2_14. · Zbl 1045.35049
[24] M. Lewin, E. H. Lieb, and R. Seiringer, Statistical mechanics of the uniform electron gas, J. Éc. Polytech. Math., 5 (2018), pp. 79-116, https://doi.org/10.5802/jep.64. · Zbl 1404.82003
[25] E. H. Lieb and M. Loss, Analysis, 2nd ed., Grad. Stud. Math. 14, AMS, Providence, RI, 2001, https://doi.org/10.1090/gsm/014. · Zbl 0966.26002
[26] M. Napiórkowski, R. Reuvers, and J. P. Solovej, Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation, Europhys. Lett. EPL, 121 (2018), 10007, https://doi.org/10.1209/0295-5075/121/10007.
[27] M. Napiórkowski, R. Reuvers, and J. P. Solovej, The Bogoliubov free energy functional I: Existence of minimizers and phase diagram, Arch. Ration. Mech. Anal., 229 (2018), pp. 1037-1090, https://doi.org/10.1007/s00205-018-1232-6. · Zbl 1404.82014
[28] M. Napiórkowski, R. Reuvers, and J. P. Solovej, The Bogoliubov free energy functional II: The dilute limit, Comm. Math. Phys., 360 (2018), pp. 347-403, https://doi.org/10.1007/s00220-017-3064-x. · Zbl 1395.82077
[29] R. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Internat. Ser. Monogr. Chem., Oxford University Press, New York, 1994.
[30] S. Paulin, B. J. Ackerson, and M. Wolfe, Equilibrium and shear induced nonequilibrium phase behavior of PMMA microgel spheres, J. Colloid Interface Sci., 178 (1996), pp. 251-262, https://doi.org/10.1006/jcis.1996.0113.
[31] J. P. Perdew, Unified theory of exchange and correlation beyond the local density approximation, in Electronic Structure of Solids ’91, P. Ziesche and H. Eschrig, eds., Akademie Verlag, Berlin, 1991, pp. 11-20.
[32] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77 (1996), pp. 3865-3868, https://doi.org/10.1103/PhysRevLett.77.3865.
[33] J. P. Perdew and S. Kurth, Density functionals for non-relativistic Coulomb systems in the new century, in A Primer in Density Functional Theory, C. Fiolhais, F. Nogueira, and M. A. L. Marques, eds., Springer, Berlin, Heidelberg, 2003, pp. 1-55, https://doi.org/10.1007/3-540-37072-2_1. · Zbl 1210.81027
[34] J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 45 (1992), pp. 13244-13249, https://doi.org/10.1103/PhysRevB.45.13244.
[35] M. Reed and B. Simon, Methods of Modern Mathematical Physics. III. Scattering Theory, Academic Press, New York, 1979. · Zbl 0405.47007
[36] H. Senff and W. Richtering, Temperature sensitive microgel suspensions: Colloidal phase behavior and rheology of soft spheres, J. Chem. Phys., 111 (1999), pp. 1705-1711, https://doi.org/10.1063/1.479430.
[37] J. Sun, J. P. Perdew, and A. Ruzsinszky, Semilocal density functional obeying a strongly tightened bound for exchange, Proc. Natl. Acad. Sci. USA, 112 (2015), pp. 685-689, https://doi.org/10.1073/pnas.1423145112.
[38] J. Sun, R. C. Remsing, Y. Zhang, Z. Sun, A. Ruzsinszky, H. Peng, Z. Yang, A. Paul, U. Waghmare, X. Wu, M. L. Klein, and J. P. Perdew, Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional, Nature Chem., 8 (2016), pp. 831-836, https://doi.org/10.1038/nchem.2535.
[39] T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Reg. Conf. Ser. Math. 106, AMS, Providence, RI, 2006, https://doi.org/10.1090/cbms/106. · Zbl 1106.35001
[40] S. Zhang and D. M. Ceperley, Hartree-Fock ground state of the three-dimensional electron gas, Phys. Rev. Lett., 100 (2008), 236404, https://doi.org/10.1103/PhysRevLett.100.236404.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.