×

zbMATH — the first resource for mathematics

Motion of the vitreous humour in a deforming eye-fluid-structure interaction between a nonlinear elastic solid and viscoelastic fluid. (Motion of the vitreous humour in a deforming eye-fluid-structure interaction between a nonlinear elastic solid and viscoleastic fluid.) (English) Zbl 1427.76288
Summary: We study the motion of vitreous humour in a deforming eyeball. From the mechanical and computational perspective, this is a task to solve a fluid-structure interaction problem between a complex viscoelastic fluid (vitreous humour) and a nonlinear elastic solid (sclera and lens). We propose a numerical methodology capable of handling the fluid-structure interaction problem, and we demonstrate its applicability via solving the corresponding governing equations in a realistic geometrical setting and for realistic parameter values. It is shown that the choice of the rheological model for the vitreous humour has a negligible influence on the overall flow pattern in the domain of interest, whilst it has a significant impact on the mechanical stress distribution in the domain of interest.
MSC:
76Z05 Physiological flows
92C35 Physiological flow
74B20 Nonlinear elasticity
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
92C10 Biomechanics
74S05 Finite element methods applied to problems in solid mechanics
Software:
CGS; Gmsh; AceFEM
PDF BibTeX Cite
Full Text: DOI
References:
[1] Kleinberg, T. T.; Tzekov, R. T.; Stein, L.; Ravi, N.; Kaushal, S., Vitreous substitutes: a comprehensive review. Vitreous substitutes: a comprehensive review, Surv. Ophthalmol., 56, 4, 300-323 (2011)
[2] Shah, N. S.; Beebe, D. C.; Lake, S. P.; Filas, B. A., On the spatiotemporal material anisotropy of the vitreous body in tension and compression. On the spatiotemporal material anisotropy of the vitreous body in tension and compression, Ann. Biomed. Eng., 44, 10, 3084-3095 (2016)
[3] David, T.; Smye, S.; Dabbs, T.; James, T., A model for the fluid motion of vitreous humour of the human eye during saccadic movement. A model for the fluid motion of vitreous humour of the human eye during saccadic movement, Phys. Med. Biol., 43, 6, 1385-1399 (1998)
[4] Repetto, R., An analytical model of the dynamics of the liquefied vitreous induced by saccadic eye movements. An analytical model of the dynamics of the liquefied vitreous induced by saccadic eye movements, Meccanica, 41, 1, 101-117 (2006) · Zbl 1098.92022
[5] Repetto, R.; Siggers, J. H.; Stocchino, A., Mathematical model of flow in the vitreous humor induced by saccadic eye rotations: effect of geometry. Mathematical model of flow in the vitreous humor induced by saccadic eye rotations: effect of geometry, Biomech. Model. Mechanobiol., 9, 1, 65-76 (2010)
[6] Meskauskas, J.; Repetto, R.; Siggers, J. H., Oscillatory motion of a viscoelastic fluid within a spherical cavity. Oscillatory motion of a viscoelastic fluid within a spherical cavity, J. Fluid Mech., 685, 1-22 (2011) · Zbl 1241.76064
[7] Meskauskas, J.; Repetto, R.; Siggers, J. H., Shape change of the vitreous chamber influences retinal detachment and reattachment processes: is mechanical stress during eye rotations a factor?. Shape change of the vitreous chamber influences retinal detachment and reattachment processes: is mechanical stress during eye rotations a factor?, Invest. Ophthalmol. Vis. Sci., 53, 10, 6271-6281 (2012)
[8] Bonfiglio, A.; Repetto, R.; Siggers, J. H.; Stocchino, A., Investigation of the motion of a viscous fluid in the vitreous cavity induced by eye rotations and implications for drug delivery. Investigation of the motion of a viscous fluid in the vitreous cavity induced by eye rotations and implications for drug delivery, Phys. Med. Biol., 58, 6, 1969-1982 (2013)
[9] Abouali, O.; Modareszadeh, A.; Ghaffariyeh, A.; Tu, J., Numerical simulation of the fluid dynamics in vitreous cavity due to saccadic eye movement. Numerical simulation of the fluid dynamics in vitreous cavity due to saccadic eye movement, Med. Eng. Phys., 34, 6, 681-692 (2012)
[10] Modarreszadeh, A.; Abouali, O., Numerical simulation for unsteady motions of the human vitreous humor as a viscoelastic substance in linear and non-linear regimes. Numerical simulation for unsteady motions of the human vitreous humor as a viscoelastic substance in linear and non-linear regimes, J. Non-Newton. Fluid Mech., 204, 22-31 (2014)
[11] Repetto, R.; Siggers, J. H.; Meskauskas, J., Steady streaming of a viscoelastic fluid within a periodically rotating sphere. Steady streaming of a viscoelastic fluid within a periodically rotating sphere, J. Fluid Mech., 761, 329-347 (2014)
[12] Lee, B.; Litt, M.; Buchsbaum, G., Rheology of the vitreous body. Part I: viscoelasticity of human vitreous. Rheology of the vitreous body. Part I: viscoelasticity of human vitreous, Biorheology, 29, 5-6, 521-533 (1992)
[13] Sharif-Kashani, P.; Hubschman, J.-P.; Sassoon, D.; Kavehpour, H. P., Rheology of the vitreous gel: effects of macromolecule organization on the viscoelastic properties. Rheology of the vitreous gel: effects of macromolecule organization on the viscoelastic properties, J. Biomech., 44, 3, 419-423 (2011)
[14] Giesekus, H., A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility, J. Non-Newton. Fluid Mech., 11, 1-2, 69-109 (1982) · Zbl 0492.76004
[15] Burgers, J. M., Mechanical considerations - model systems - phenomenological theories of relaxation and viscosity. Mechanical considerations - model systems - phenomenological theories of relaxation and viscosity, First Report on Viscosity and Plasticity, 5-67 (1939), Nordemann Publishing: Nordemann Publishing New York
[16] Rajagopal, K. R.; Srinivasa, A. R., A thermodynamic frame work for rate type fluid models. A thermodynamic frame work for rate type fluid models, J. Non-Newton. Fluid Mech., 88, 3, 207-227 (2000) · Zbl 0960.76005
[17] Donea, J.; Huerta, A.; Ponthot, J.-P.; -Ferrari, Rodríguez, Arbitrary Lagrangian-Eulerian methods. Arbitrary Lagrangian-Eulerian methods, Encyclopedia of Computational Mechanics (2004), John Wiley & Sons
[18] Wineman, A. S.; Rajagopal, K. R., Mechanical Response of Polymers—An Introduction (2000), Cambridge University Press: Cambridge University Press Cambridge
[19] Karra, S.; Rajagopal, K. R., Development of three dimensional constitutive theories based on lower dimensional experimental data. Development of three dimensional constitutive theories based on lower dimensional experimental data, Appl. Math., 54, 2, 147-176 (2009) · Zbl 1200.76005
[20] Rao, I. J.; Rajagopal, K. R., A thermodynamic framework for the study of crystallization in polymers. A thermodynamic framework for the study of crystallization in polymers, Z. Angew. Math. Phys., 53, 3, 365-406 (2002) · Zbl 1010.80005
[21] Sodhi, J. S.; Rao, I. J., Modeling the mechanics of light activated shape memory polymers. Modeling the mechanics of light activated shape memory polymers, Int. J. Eng. Sci., 48, 11, 1576-1589 (2010)
[22] Málek, J.; Rajagopal, K. R.; Tůma, K., On a variant of the Maxwell and Oldroyd-B models within the context of a thermodynamic basis. On a variant of the Maxwell and Oldroyd-B models within the context of a thermodynamic basis, Int. J. Non-Linear Mech., 76, 42-47 (2015)
[23] Řehoř, M.; Průša, V.; Tůma, P., On the response of nonlinear viscoelastic materials in creep and stress relaxation experiments in the lubricated squeeze flow setting. On the response of nonlinear viscoelastic materials in creep and stress relaxation experiments in the lubricated squeeze flow setting, Phys. Fluids, 28, 10 (2016)
[24] Kwack, J.; Masud, A.; Rajagopal, K. R., Stabilized mixed three-field formulation for a generalized incompressible Oldroyd-B model. Stabilized mixed three-field formulation for a generalized incompressible Oldroyd-B model, Int. J. Numer. Meth. Fluids, 83, 704-734 (2016)
[25] Hron, J.; Miloš, V.; Průša, V.; Souček, O.; Tůma, K., On thermodynamics of viscoelastic rate type fluids with temperature dependent material coefficients. On thermodynamics of viscoelastic rate type fluids with temperature dependent material coefficients, Int. J. Non-Linear Mech., 95, 193-208 (2017)
[26] Tůma, K., Identification of rate type fluids suitable for modeling geomaterials (2013), Charles University, (Ph.D. thesis)
[27] Hron, J.; Rajagopal, K. R.; Tůma, K., Flow of a Burgers fluid due to time varying loads on deforming boundaries. Flow of a Burgers fluid due to time varying loads on deforming boundaries, J. Non-Newton. Fluid Mech., 210, 66-77 (2014)
[28] Málek, J.; Rajagopal, K. R.; Tůma, K., A thermodynamically compatible model for describing the response of asphalt binders. A thermodynamically compatible model for describing the response of asphalt binders, Int. J. Pavement Eng., 16, 4, 297-314 (2015)
[29] Málek, J.; Rajagopal, K. R.; Tůma, K., A thermodynamically compatible model for describing asphalt binders: solutions of problems. A thermodynamically compatible model for describing asphalt binders: solutions of problems, Int. J. Pavement Eng., 17, 6, 550-564 (2016)
[30] Narayan, S. P.A.; Little, D. N.; Rajagopal, K. R., Modelling the nonlinear viscoelastic response of asphalt binders. Modelling the nonlinear viscoelastic response of asphalt binders, Int. J. Pavement Eng., 17, 2, 123-132 (2016)
[31] Truesdell, C.; Noll, W., The Non-Linear Field Theories of Mechanics (2004), Springer: Springer Berlin · Zbl 0779.73004
[32] Grytz, R.; Fazio, M. A.; Girard, M. J.; Libertiaux, V.; Bruno, L.; Gardiner, S.; Girkin, C. A.; Downs, J. C., Material properties of the posterior human sclera. Material properties of the posterior human sclera, J. Mech. Behav. Biomed. Mater., 29, 602-617 (2014)
[33] G. Scovazzi, T. Hughes, Lecture notes on continuum mechanics on arbitrary moving domains, Technical Report, SAND-2007-6312P, Sandia National Laboratories, 2007.
[34] Razzaq, M.; Hron, J.; Turek, S., Numerical simulation of laminar incompressible fluid-structure interaction for elastic material with point constraints. Numerical simulation of laminar incompressible fluid-structure interaction for elastic material with point constraints, Advances in Mathematical Fluid Mechanics, 451-472 (2010), Springer: Springer Berlin · Zbl 1374.74035
[35] Hron, J.; Mádlík, M., Fluid-structure interaction with applications in biomechanics. Fluid-structure interaction with applications in biomechanics, Nonlinear Anal.-Real World Appl., 8, 5, 1431-1458 (2007) · Zbl 1145.74010
[36] Korelc, J.; Wriggers, P., Automation of Finite Element Methods (2016), Springer · Zbl 1367.74001
[37] Silvester, D.; Elman, H.; Kay, D.; Wathen, A., Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow. Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow, J. Comput. Appl. Math., 128, 261-279 (2001) · Zbl 0983.76051
[38] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer · Zbl 0788.73002
[39] Korelc, J., Multi-language and multi-environment generation of nonlinear finite element codes. Multi-language and multi-environment generation of nonlinear finite element codes, Eng. Comput., 18, 4, 312-327 (2002)
[40] Korelc, J., Automation of primal and sensitivity analysis of transient coupled problems. Automation of primal and sensitivity analysis of transient coupled problems, Comput. Mech., 44, 5, 631-649 (2009) · Zbl 1171.74043
[41] Sonneveld, P., CGS, A fast Lanczos-type solver for nonsymmetric linear systems. CGS, A fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 10, 1, 36-52 (1989) · Zbl 0666.65029
[42] Ge, P.; Bottega, W. J.; Prenner, J. L.; Fine, H. F., On the behavior of an eye encircled by a scleral buckle. On the behavior of an eye encircled by a scleral buckle, J. Math. Biol., 74, 1, 313-332 (2017) · Zbl 1357.92021
[43] Bottega, W. J.; Bishay, P. L.; Prenner, J. L.; Fine, H. F., On the mechanics of a detaching retina. On the mechanics of a detaching retina, Math. Med. Biol., 30, 4, 287-310 (2013) · Zbl 1278.92008
[44] Lakawicz, J. M.; Bottega, W. J.; Prenner, J. L.; Fine, H. F., An analysis of the mechanical behaviour of a detaching retina. An analysis of the mechanical behaviour of a detaching retina, Math. Med. Biol., 32, 2, 137-161 (2015) · Zbl 1351.92007
[45] Chou, T.; Siegel, M., A mechanical model of retinal detachment. A mechanical model of retinal detachment, Phys. Biol., 9, 4, 046001 (2012)
[46] Zauberman, H.; de Guillebon, H.; Holly, F. J., Retinal traction in vitro: biophysical aspects. Retinal traction in vitro: biophysical aspects, Invest. Ophthalmol. Vis. Sci., 11, 1, 46 (1972)
[47] Hans, S. A.; Bawab, S. Y.; Woodhouse, M. L., A finite element infant eye model to investigate retinal forces in shaken baby syndrome. A finite element infant eye model to investigate retinal forces in shaken baby syndrome, Graefes Arch. Clin. Exp. Ophthalmol., 247, 4, 561-571 (2009)
[48] Geuzaine, C.; Remacle, J. F., Gmsh: a 3-d finite element mesh generator with built-in pre- and post-processing facilities. Gmsh: a 3-d finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[49] (Murphy, W.; Black, J.; Hastings, G. (2016), Springer)
[50] Wilde, G. S.; Burd, H. J.; Judge, S. J., Shear modulus data for the human lens determined from a spinning lens test. Shear modulus data for the human lens determined from a spinning lens test, Exp. Eye Res., 97, 1, 36-48 (2012)
[51] Su, X.; Vesco, C.; Fleming, J.; Choh, V., Density of ocular components of the bovine eye. Density of ocular components of the bovine eye, Optom. Vis. Sci., 86, 10, 1187-1195 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.