Stable strategies analysis based on the utility of Z-number in the evolutionary games. (English) Zbl 1427.91038

Summary: Evolutionary games with the fuzzy set are attracting growing interest. While among previous studies, the role of the reliability of knowledge in such an infrastructure is still virgin and may become a fascinating issue. Z-number is combined with “restriction” and “reliability”, which is an efficient framework to simulate the thinking of human. In this paper, the stable strategies analysis based on the utility of Z-number in the evolutionary games is proposed, which can simulate the procedure of human’s competition and cooperation more authentically and more flexibly. Some numerical examples and an application are used to illustrate the effectiveness of the proposed methodology. Results show that total utility of Z-number can be used as an index to extend the classical evolutionary games into ones linguistic-based, which is applicable in the real applications since the payoff matrix is always determined by the knowledge of human using uncertain information, e.g., (outcome of the next year, about fifty thousand dollars, likely).


91A22 Evolutionary games
Full Text: DOI


[1] Von Neumann, J.; Morgenstern, O., Theory of Games and Economic Behavior, (2007), Princeton University Press · Zbl 0205.23401
[2] Civai, C.; Hawes, D. R., Game theory in neuroeconomics, Neuroeconomics, 13-37, (2016), Springer
[3] Moradi, M. H.; Abedini, M.; Hosseinian, S. M., A combination of evolutionary algorithm and game theory for optimal location and operation of DG from DG owner standpoints, IEEE Trans. Smart Grid, 7, 2, 608-616, (2016)
[4] Koulali, S.; Sabir, E.; Taleb, T.; Azizi, M., A Green strategic activity scheduling for UAV networks: a sub-modular game perspective, IEEE Commun. Mag., 54, 5, 58-64, (2016)
[5] Hammerstein, P.; Leimar, O., Evolutionary game theory in biology, Handb. Game Theory Econ. Appl., 4, 575-617, (2015)
[6] Smith, J. M.; Price, G., The logic of animal conflict, Nature, 246, 15, (1973) · Zbl 1369.92134
[7] Perc, M.; Szolnoki, A., Coevolutionary games-a mini review, BioSystems, 99, 2, 109-125, (2010)
[8] Perc, M.; Gómez-Gardeñes, J.; Szolnoki, A.; Floría, L. M.; Moreno, Y., Evolutionary dynamics of group interactions on structured populations: a review, J. R. Soc. Interface, 10, 80, 20120997, (2013)
[9] Wang, Z.; Kokubo, S.; Tanimoto, J.; Fukuda, E.; Shigaki, K., Insight into the so-called spatial reciprocity, Phys. Rev. E, 88, 4, 042145, (2013)
[10] Wang, Z.; Andrews, M. A.; Wu, Z.-X.; Wang, L.; Bauch, C. T., Coupled disease-behavior dynamics on complex networks: a review, Phys. Life Rev., 15, 1-29, (2015)
[11] Wang, Z.; Jusup, M.; Wang, R.-W.; Shi, L.; Iwasa, Y.; Moreno, Y.; Kurths, J., Onymity promotes cooperation in social dilemma experiments, Sci. Adv., 3, 3, e1601444, (2017)
[12] Perc, M.; Jordan, J. J.; Rand, D. G.; Wang, Z.; Boccaletti, S.; Szolnoki, A., Statistical physics of human cooperation, Phys. Rep., (2017) · Zbl 1366.80006
[13] Perc, M., Phase transitions in models of human cooperation, Phys. Lett. A, 380, 36, 2803-2808, (2016)
[14] Wang, Z.; Bauch, C. T.; Bhattacharyya, S.; d’Onofrio, A.; Manfredi, P.; Perc, M.; Perra, N.; Salathé, M.; Zhao, D., Statistical physics of vaccination, Phys. Rep., 664, 1-113, (2016) · Zbl 1359.92111
[15] Keivanpour, S.; Ait-Kadi, D.; Mascle, C., Automobile manufacturers’ strategic choice in applying Green practices: joint application of evolutionary game theory and fuzzy rule-based approach, Int. J. Prod. Res., 55, 5, 1312-1335, (2017)
[16] Kordafshari, M.; Movaghar, A.; Meybodi, M., A joint duty cycle scheduling and energy aware routing approach based on evolutionary game for wireless sensor networks, Iran. J. Fuzzy Syst., 14, 2, 23-44, (2017) · Zbl 1367.90053
[17] Zadeh, L. A., Fuzzy sets, Inf. Control, 8, 3, 338-353, (1965) · Zbl 0139.24606
[18] Chou, C.-C., A fuzzy MCDM method for solving marine transshipment container port selection problems, Appl. Math. Comput., 186, 1, 435-444, (2007) · Zbl 1185.90130
[19] Chou, C.-C.; Liu, L.-J.; Huang, S.-F.; Yih, J.-M.; Han, T.-C., An evaluation of airline service quality using the fuzzy weighted servqual method, Appl. Soft Comput., 11, 2, 2117-2128, (2011)
[20] Jiang, W.; Wang, S., An uncertainty measure for interval-valued evidences, Int. J. Comput. Commun. Control, 12, 5, 631-644, (2017)
[21] Xu, S.; Jiang, W.; Deng, X.; Shou, Y., A modified physarum-inspired model for the user equilibrium traffic assignment problem, Appl. Math. Model., (2017)
[22] Jiang, W.; Wei, B.; Xiang, L.; Li, X.; Zheng, H., Intuitionistic fuzzy power aggregation operator based on entropy and its application in decision making, Int. J. Intell. Syst., (2017)
[23] Mo, H.; Deng, Y., A new aggregating operator in linguistic decision making based on D numbers, Int. J. Uncertain. Fuzziness Knowl. Based Syst., 24, 6, 831-846, (2016) · Zbl 1377.68242
[24] Kang, B.; Deng, Y.; Sadiq, R.; Mahadevan, S., Evidential cognitive maps, Knowl. Based Syst., 35, 77-86, (2012)
[25] Liu, J.; Lian, F.; Mallick, M., Distributed compressed sensing based joint detection and tracking for multistatic radar system, Inf. Sci., 369, 100-118, (2016)
[26] Hu, Y.; Du, F.; Zhang, H. L., Investigation of unsteady aerodynamics effects in cycloidal rotor using RANS solver, Aeronaut. J., 120, 1228, 956-970, (2016)
[27] Xiao, F.; Zhan, C.; Lai, H.; Tao, L.; Qu, Z., New parallel processing strategies in complex event processing systems with data streams, Int. J. Distrib. Sens. Netw., 13, 8, 1-15, (2017)
[28] Xiao, F.; Aritsugi, M.; Wang, Q.; Zhang, R., Efficient processing of multiple nested event pattern queries over multi-dimensional event streams based on a triaxial hierarchical model, Artif. Intell. Med., 72, 56-71, (2016)
[29] Zhang, Q.; Li, M.; Deng, Y., Measure the structure similarity of nodes in complex networks based on relative entropy, Phys. A Stat. Mech. Appl., 491, 749-763, (2018)
[30] Liu, T.; Deng, Y.; Chan, F., Evidential supplier selection based on DEMATEL and game theory, Int. J. Fuzzy Syst., (2017)
[31] Zheng, X.; Deng, Y., Dependence assessment in human reliability analysis based on evidence credibility decay model and iowa operator, Ann. Nucl. Energy, 112, 673-684, (2018)
[32] Zhou, X.; Deng, X.; Deng, Y.; Mahadevan, S., Dependence assessment in human reliability analysis based on D numbers and AHP, Nucl. Eng. Des., 313, 243-252, (2017)
[33] Zhang, R.; Ashuri, B.; Deng, Y., A novel method for forecasting time series based on fuzzy logic and visibility graph, Adv. Data Anal. Classif., (2017)
[34] Zheng, H.; Deng, Y., Evaluation method based on fuzzy relations between Dempster-Shafer belief structure, Int. J. Intell. Syst., (2017)
[35] Zheng, H.; Deng, Y.; Hu, Y., Fuzzy evidential influence diagram and its evaluation algorithm, Knowl. Based Syst., 131, 28-45, (2017)
[36] Kang, B.; Chhipi-Shrestha, G.; Deng, Y.; Mori, J.; Hewage, K.; Sadiq, R., Development of a predictive model for clostridium difficile infection incidence in hospitals using Gaussian mixture model and Dempster-Shafer theroy, Stoch. Environ. Res. Risk Assess., (2017)
[37] Fei, L.; Wang, H.; Chen, L.; Deng, Y., A new vector valued similarity measure for intuitionistic fuzzy sets based on OWA operators, Iran. J. Fuzzy Syst., (2017)
[38] Liu, B.; Hu, Y.; Deng, Y., New failure mode and effects analysis based on D numbers downscaling method, Int. J. Comput. Commun. Control, 13, 2, (2018)
[39] Dong, Y.; Wang, J.; Chen, F.; Hu, Y.; Deng, Y., Location of facility based on simulated annealing and “ZKW” algorithms, Math. Probl. Eng., 2017, 9, (2017)
[40] Zadeh, L. A., A note on Z-numbers, Inf. Sci., 181, 14, 2923-2932, (2011) · Zbl 1217.94142
[41] Aliev, R. A.; Alizadeh, A. V.; Huseynov, O. H., The arithmetic of discrete Z-numbers, Inf. Sci., 290, 134-155, (2015) · Zbl 1355.94109
[42] Aliev, R.; Huseynov, O.; Zeinalova, L., The arithmetic of continuous Z-numbers, Inf. Sci., 373, 441-460, (2016)
[43] Yager, R. R., On z-valuations using zadeh’s Z-numbers, Int. J. Intell. Syst., 27, 3, 259-278, (2012)
[44] Jiang, W.; Xie, C.; Zhuang, M.; Shou, Y.; Tang, Y., Sensor data fusion with Z-numbers and its application in fault diagnosis, Sensors, 16, 9, 1509, (2016)
[45] Abiyev, R. H., Z number based fuzzy inference system for dynamic plant control, Adv. Fuzzy Syst., 2016, (2016) · Zbl 1397.93116
[46] Azadeh, A.; Kokabi, R., Z-number DEA: A new possibilistic DEA in the context of Z-numbers, Adv. Eng. Inf., 30, 3, 604-617, (2016)
[47] Kang, B.; Hu, Y.; Deng, Y.; Zhou, D., A new methodology of multicriteria decision-making in supplier selection based on Z-numbers, Math. Probl. Eng., 2016, 1-17, (2016) · Zbl 1400.90192
[48] Wang, J.-q.; Cao, Y.-x.; Zhang, H.-y., Multi-criteria decision-making method based on distance measure and Choquet integral for linguistic Z-numbers, Cogn. Comput., 1-16, (2017)
[49] Yaakob, A. M.; Gegov, A., Interactive topsis based group decision making methodology using Z-numbers, Int. J. Comput. Intell. Syst., 9, 2, 311-324, (2016)
[50] Jiang, W.; Xie, C.; Luo, Y.; Tang, Y., Ranking Z-numbers with an improved ranking method for generalized fuzzy numbers, J. Intell. Fuzzy Syst., 32, 3, 1931-1943, (2017) · Zbl 1375.03071
[51] Jiang, W.; Xie, C.; Wei, B.; Tang, Y., Failure mode and effects analysis based on Z-numbers, Intell. Autom. Soft Comput., 1-8, (2017)
[52] Kang, B.; Deng, Y.; Sadiq, R., Total utility of Z-number, Appl. Intell., 1-27, (2017)
[53] Smith, J. M., Evolution and the Theory of Games, (1982), Cambridge University Press
[54] Szabó, G.; Fath, G., Evolutionary games on graphs, Phys. Rep., 446, 4, 97-216, (2007)
[55] Smith, J. M., The theory of games and the evolution of animal conflicts, J. Theor. Biol., 47, 1, 209-221, (1974)
[56] Wang, Z.; Wang, L.; Szolnoki, A.; Perc, M., Evolutionary games on multilayer networks: a colloquium, Eur. Phys. J. B, 88, 5, 124, (2015)
[57] Wang, Z.; Kokubo, S.; Jusup, M.; Tanimoto, J., Universal scaling for the dilemma strength in evolutionary games, Phys. Life Rev., 14, 1-30, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.