×

Simple factor dressings and Bianchi-Bäcklund transformations. (English) Zbl 1428.53017

Summary: In this paper, we directly show the known equivalence of simple factor dressings of extended frames and the classical Bianchi-Bäcklund transformations for constant mean curvature surfaces. In doing so, we show how the parameters of classical Bianchi-Bäcklund transformations can be incorporated into the simple factor dressings method.

MSC:

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
58J72 Correspondences and other transformation methods (e.g., Lie-Bäcklund) for PDEs on manifolds
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] A. V. Bäcklund, Om ytor med konstant negativ krökning, Lunds Universitets Årsskrift 19 (1883), 1-48.
[2] L. Bianchi, Sulla trasformazione di Bäcklund per le superficie pseudosferiche, Rend. Lincei 5 (1892), no. 1, 3-12. · JFM 24.0735.01
[3] L. Bianchi, Lezioni di Geometria Differenziale, Volume II. Enrico Spoerri, Pisa, 1903. · JFM 34.0670.01
[4] A. I. Bobenko, All constant mean curvature tori in \(R^3, S^3, H^3\) in terms of theta-functions, Math. Ann. 290 (1991), no. 2, 209-245. · Zbl 0711.53007
[5] A. I. Bobenko, Surfaces of constant mean curvature and integrable equations, Russian Math. Surveys 46 (1991), no. 4, 1-45. · Zbl 0780.53009 · doi:10.1070/RM1991v046n04ABEH002826
[6] A. I. Bobenko, “Surfaces in Terms of \(2\) by \(2\) Matrices. Old and New Integrable Cases” in Harmonic Maps and Integrable Systems, Aspects Math. E23, 83-127. Friedr. Vieweg, Braunschweig, 1994. · Zbl 0841.53003
[7] F. E. Burstall, “Isothermic Surfaces: Conformal Geometry, Clifford Algebras and Integrable Systems” in Integrable Systems, Geometry, and Topology, AMS/IP Stud. Adv. Math. 36, 1-82, Amer. Math. Soc. Providence, RI, 2006. · Zbl 1105.53002
[8] F. E. Burstall, J. Dorfmeister, K. Leschke, and A. C. Quintino, Darboux transforms and simple factor dressing of constant mean curvature surfaces, Manuscripta Math. 140 (2013), nos. 1-2, 213-236. · Zbl 1269.53009 · doi:10.1007/s00229-012-0537-2
[9] F. E. Burstall and F. Pedit, Dressing orbits of harmonic maps, Duke Math. J. 80 (1995), no. 2, 353-382. · Zbl 0966.58007 · doi:10.1215/S0012-7094-95-08015-6
[10] G. Darboux, Sur les surfaces isothermiques, C. R. Acad. Sci. Paris 128 (1899), 1299-1305. · JFM 30.0555.02
[11] J. Dorfmeister and G. Haak, Investigation and application of the dressing action on surfaces of constant mean curvature, Q. J. Math. 51 (2000), no. 1, 57-73. · Zbl 1001.53003 · doi:10.1093/qmathj/50.1.57
[12] J. Dorfmeister and G. Haak, Construction of non-simply connected CMC surfaces via dressing, J. Math. Soc. Japan 55 (2003), no. 2, 335-364. · Zbl 1035.53015 · doi:10.2969/jmsj/1191419120
[13] J. Dorfmeister and M. Kilian, Dressing preserving the fundamental group, Differential Geom. Appl. 23 (2005), no. 2, 176-204. · Zbl 1079.53013 · doi:10.1016/j.difgeo.2005.06.001
[14] J. Dorfmeister, F. Pedit, and H. Wu, Weierstrass type representation of harmonic maps into symmetric spaces, Comm. Anal. Geom. 6 (1998), no. 4, 633-668. · Zbl 0932.58018 · doi:10.4310/CAG.1998.v6.n4.a1
[15] J. Dorfmeister and H. Wu, Constant mean curvature surfaces and loop groups, J. Reine Angew. Math. 440 (1993), 43-76. · Zbl 0779.53004
[16] U. Hertrich-Jeromin. Introduction to Möbius Differential Geometry, London Math. Soc. Lecture Note Ser. 300, Cambridge Univ. Press, Cambridge, 2003. · Zbl 1040.53002
[17] U. Hertrich-Jeromin and F. Pedit, Remarks on the Darboux transform of isothermic surfaces, Doc. Math. 2 (1997), 313-333. · Zbl 0892.53003
[18] M. Kilian, Constant mean curvature cylinders. Ph.D. dissertation, University of Massachusetts, Amherst, 2000.
[19] M. Kilian, N. Schmitt, and I. Sterling, Dressing CMC \(n\)-noids, Math. Z. 246 (2004), no. 3, 501-519. · Zbl 1065.53010
[20] S.-P. Kobayashi, Bubbletons in 3-dimensional space forms, Balkan J. Geom. Appl. 9 (2004), no. 1, 44-68. · Zbl 1072.53003
[21] S.-P. Kobayashi, Asymptotics of ends of constant mean curvature surfaces with bubbletons, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1433-1443. · Zbl 1132.53008 · doi:10.1090/S0002-9939-07-09137-X
[22] S.-P. Kobayashi and J. Inoguchi, Characterizations of Bianchi-Bäcklund transformations of constant mean curvature surfaces, Internat. J. Math. 16 (2005), no. 2, 101-110. · Zbl 1083.53011
[23] A. Mahler. Bianchi-Bäcklund transformations for constant mean curvature surfaces with umbilics—Theory and applications. Ph.D. dissertation, University of Toledo, 2002.
[24] R. Pacheco, Bianchi-Bäcklund transforms and dressing actions, revisited, Geom. Dedicata 146 (2010), 85-99. · Zbl 1201.53004
[25] I. Sterling and H. C. Wente, Existence and classification of constant mean curvature multibubbletons of finite and infinite type, Indiana Univ. Math. J. 42 (1993), no. 4. 1239-1266. · Zbl 0803.53009 · doi:10.1512/iumj.1993.42.42057
[26] A. Sym, “Soliton surfaces and their applications (soliton geometry from spectral problems)” in Geometric Aspects of the Einstein Equations and Integrable Systems (Scheveningen, 1984), Lecture Notes in Phys. 239, 154-231. Springer, Berlin, 1985. · Zbl 0583.53017
[27] C.-L. Terng and K. Uhlenbeck, Bäcklund transformations and loop group actions, Comm. Pure Appl. Math. 53 (2000), no. 1, 1-75. · Zbl 1031.37064
[28] K. Uhlenbeck, Harmonic maps into lie groups: classical solutions of the chiral model, J. Differential Geom. 30 (1989), no. 1, 1-50. · Zbl 0677.58020 · doi:10.4310/jdg/1214443286
[29] V. E. Zakharov and A. B. Šabat, Integration of the nonlinear equations of mathematical physics by the method of the inverse scattering problem. ii, Funktsional. Anal. i Prilozhen. 13 (1979), no. 3, 13-22.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.