×

zbMATH — the first resource for mathematics

Exact meta-analysis of several independent progressively type-II censored data. (English) Zbl 1428.62192
Summary: Exact inference for the case when multiple independent progressively Type-II censored samples are pooled is considered. Two representations for the marginal distributions of the resulting pooled order statistics are given, a direct method and an iterative method. The coverage probabilities and expected widths of exact nonparametric confidence intervals for quantiles are compared for various scenarios with one or more independent samples.

MSC:
62G30 Order statistics; empirical distribution functions
62N01 Censored data models
62G15 Nonparametric tolerance and confidence regions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Balakrishnan, N.; Aggarwala, R., Progressive Censoring: Theory, Methods, and Applications (2000), Birkhäuser: Birkhäuser Boston
[2] Balakrishnan, N., Progressive censoring methodology: an appraisal, TEST, 16, 211-296 (2007), (with discussions) · Zbl 1121.62052
[3] Kamps, U.; Cramer, E., On distribution of generalized order statistics, Statistics, 35, 3, 269-280 (2001) · Zbl 0979.62036
[4] Arnold, B. C.; Balakrishnan, N.; Nagaraja, H. N., A First Course in Order Statistics (1992), John Wiley & Sons: John Wiley & Sons New York · Zbl 0850.62008
[5] David, H. A.; Nagaraja, H. N., Order Statistics (2003), John Wiley & Sons: John Wiley & Sons Hoboken, New Jersey · Zbl 1053.62060
[6] Balakrishnan, N.; Beutner, E.; Cramer, E., Exact two-sample non-parametric confidence, prediction, and tolerance intervals based on ordinary and progressively Type-II right censored data, TEST, 19, 68-91 (2010) · Zbl 1203.62089
[7] Volterman, W.; Balakrishnan, N., Exact nonparametric confidence, prediction, and tolerance intervals based on multi-sample Type-II right censored data, J. Stat. Planning Inference, 140, 11, 3306-3316 (2010) · Zbl 1204.62081
[8] Guilbaud, O., Exact non-parametric confidence intervals with progressive type-II censoring, Scand. J. Stat., 28, 699-713 (2001) · Zbl 1010.62038
[9] Guilbaud, O., Exact non-parametric confidence, prediction and tolerance intervals for quantiles with progressive type-II censoring, Scand. J. Stat., 31, 265-281 (2004) · Zbl 1060.62107
[10] Gastwirth, J. L., The first-median test: a two-sided version of the control median test, J. Am. Stat. Assoc., 63, 692-713 (1968) · Zbl 0162.21805
[11] Ng, H. K.T.; Balakrishnan, N., Weighted precedence and maximal precedence tests and an extension to progressive censoring, J. Stat. Planning Inference, 135, 197-221 (2005) · Zbl 1070.62088
[12] Bairamov, I.; Eryilmaz, S., Spacings, exceedances and concomitants in progressive type II censoring scheme, J. Stat. Planning Inference, 136, 527-539 (2006) · Zbl 1080.62025
[13] Nelson, W., Applied Life Data Analysis (1982), John Wiley & Sons: John Wiley & Sons New York · Zbl 0579.62089
[14] Hájek, J.; Šidák, Z., Theory of Rank Tests (1967), Academic Press: Academic Press New York · Zbl 0161.38102
[15] Reiss, R.-D., Approximate Distributions of Order Statistics (1989), Springer: Springer New York · Zbl 0682.62009
[16] Blom, G., Extrapolation of linear estimates to larger sample sizes, J. Am. Stat. Assoc., 75, 912-917 (1980) · Zbl 0455.62025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.