×

Propagation of two independent sources of uncertainty in the electrocardiography imaging inverse solution. (English) Zbl 1428.65064

The authors present a new stochastic formulation for the electrocardiography (ECG) imaging problem. The new formulation allows to study the effects of the imput parameter uncertainties (organ conductivities, boundary data, etc.). The problem is solved via SFEM (stochastic finite element method) based on generalized polynomial chaos. Several numerical simulations (on a two-dimensional computational mesh of a realistic geometry) show that the method allows to quantify the effect of organ conductivity and epicardial boundary data uncertinities in the torso.

MSC:

65N20 Numerical methods for ill-posed problems for boundary value problems involving PDEs
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
92C55 Biomedical imaging and signal processing
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] R. Aboulaich, A.B. Abda and M. Kallel, Missing boundary data reconstruction via an approximate optimal control. Inverse Probl. Imaging2 (2008) 411-426. · Zbl 1177.35244 · doi:10.3934/ipi.2008.2.411
[2] R. Aboulaich, N. Fikal, E.E. Guarmah and N. Zemzemi, Stochastic finite element method for torso conductivity uncertainties quantification in electrocardiography inverse problem. MMNP11 (2016) 1-19. · Zbl 1458.65142
[3] S. Andrieux, T. Baranger and A.B. Abda, Solving Cauchy problems by minimizing an energy-like functional. Inverse Probl.22 (2006) 115-133. · Zbl 1089.35084
[4] V. Asokan, B. Narayanan and N. Zabaras, Stochastic inverse heat conduction using a spectral approach. Int. J. Numer. Meth. Eng.60 (2004) 1-24. · Zbl 1098.80008 · doi:10.1002/nme.950
[5] I. Babuska, R. Tempone and G. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal.42 (2005) 800-825. · Zbl 1080.65003
[6] I. Babuska, R. Tempone and G. Zouraris, Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation, Comput. Methods Appl. Mech. Eng.194 (2005) 1251-1294. · Zbl 1087.65004
[7] J. Barbara and Y. Rudy, The inverse problem in electrocardiography: a model study of the effects of geometry and conductivity parameters on the reconstruction of epicardial potentials. IEEE Trans. Biomed. Eng.33 (1986) 667-676.
[8] M. Berveiller, Eléments finis stochastiques: approches intrusive et non intrusive pour des analyses de fiabilité. Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand, 2005.
[9] M. Boulakia, C. Serge, M. Fernández, G. Jean-Fré:déric and N. Zemzemi, Mathematical modeling of electrocardiograms: a numerical study. Ann. Biomed. Eng.38 (2010) 1071-1097. · doi:10.1007/s10439-009-9873-0
[10] C. Bullard and A. Sebald, Monte Carlo sensitivity analysis of input-output models. Rev. Econ. Statist.70, 1 (1988) 708-712. · doi:10.2307/1935838
[11] Y. Cao, M. Hussain and T. Zang, An efficient Monte Carlo method for optimal control problems with uncertainty. Comput. Optim. Appl.26 (2003) 219-230. · Zbl 1077.49026
[12] Y. Cao, Numerical Solutions for Optimal Control Problems under SPDE Constraints. Technical Report, Department of Mathematics, Florida A.M University, Tallahassee, FL (2006). · doi:10.21236/ADA458787
[13] J. Ching, J.L. Beck and K.A. Porter, Bayesian state and parameter estimation of uncertain dynamical systems. Elsevier Probab Eng. Mech.21 (2006) 81-96. · doi:10.1016/j.probengmech.2005.08.003
[14] F. Duck, Physical Properties of Tissue: A Comprehensive Reference Book. Academic Press (1990).
[15] M. Eiermann, O. Ernst and E. Ullmann, Computational aspects of the stochastic finite element method. Comput. Visual. Sci.1 (2007) 3-15. · Zbl 1123.65004 · doi:10.1007/s00791-006-0047-4
[16] T. Faes, D. Van, D. Munck and R. Heethaar, The electric resistivity of human tissues (100 Hz-10 mHz): a meta-analysis of review studies. Physiol. Meas.4 (1999) 1-11.
[17] M. Ferná:ndez and N. Zemzemi, Decoupled time-marching schemes in computational cardiac electrophysiology and ECG numerical simulation. Math. Biosci.226 (2010) 58-75. · Zbl 1193.92024
[18] S. Gabriel, R. Lau and C. Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol.41 (1996) 22-51.
[19] S. Geneser, R. Kirby, R. Macleod and R. Kirby, Application of stochastic finite element methods to study the sensitivity of ECG forward modeling to organ conductivity IEEE Trans. Biomed. Eng., 55 (2008), 31-40.
[20] R. Gulrajani, The forward and inverse problems of electrocardiography. EMBS Mag.17 (1998) 84-101.
[21] J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations, New Haven, Yale University Press (1923). · JFM 49.0725.04
[22] D. Hamby, A review of techniques for parameter sensitivity analysis of environmental models. Rev. Econ. Stat.32 (1994) 135-154.
[23] J.M. Holtzman, On using perturbation analysis to do sensitivity analysis: derivatives versus differences. IEEE Trans. Autom. Control37 (1992) 243-247. · doi:10.1109/9.121628
[24] L. Hou, J. Lee and H. Manouzi, Finite element approximations of stochastic optimal control problems constrained by stochastic elliptic PDEs. J. Math. Anal. Appl.384 (2011) 87-103. · Zbl 1227.65011
[25] O.L. Maître, M. Reagan, H. Najm, R. Ghanem and O. Knio, A stochastic projection method for fluid flow: II. Random process. J. Comput. Phys.181 (2002) 9-44. · Zbl 1052.76057
[26] A. Mugler, H.J. Starkloff, On elliptic partial differential equations with random coefficients. Stud. Univ. Babes-Bolyai Math., 56 (2011) 473-487.
[27] A. Oosterom and G. Huiskamp, The effect of torso inhomogeneities on body surface potentials quantified using tailored geometry. J. Electrocardiol.22, 1 (1989) 53-72.
[28] C. Ramanathan and Y. Rudy, Electrocardiographic imaging: II. Effect of torso inhomogeneities on noninvasive reconstruction of epicardial potentials, electrograms and isochrones. J. Cardiovasc. Electrophysiol.12 (2001) 241-252. · doi:10.1046/j.1540-8167.2001.00241.x
[29] E. Rosseel and G.N. Wells, Optimal control with stochastic PDE constraints and uncertain controls. Comput. Methods Appl. Mech. Eng.213 (2012) 152-167. · Zbl 1243.49034
[30] H. Tiesler, R.M Kirby, D. Xiu and T. Preusser, Stochastic collocation for optimal control problems with stochastic PDE constraints. SIAM J. Control Optim.50 (2012) 2659-2682. · Zbl 1260.60125 · doi:10.1137/110835438
[31] H. Verbeeck, R. Samson, F. Verdonck and R. Lemeur, FORUG: a Monte Carlo analysis. Tree Physiol.26 (2006) 807-817. · doi:10.1093/treephys/26.6.807
[32] J. Wan and N. Zabaras, A Bayesian approach to multiscale inverse problems using the sequential Monte Carlo method. Inverse Probl.27 (2011) 105004. · Zbl 1228.65009
[33] F. Weber, D. Keller, S. Bauer, G. Seemann, C. Lorenz and O. Dossel, Predicting tissue conductivity influences on body surface potentialsan efficient approach based on principal component analysis. IEEE Trans. Biomed. Eng.58 (2011) 256-273.
[34] N. Wiener, The homogeneous chaos. Am. J. Math.60 (1998) 897-936. · Zbl 0019.35406 · doi:10.2307/2371268
[35] D. Xiu and G. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos. Elsevier J. Comput. Phys.187 (2003) 137-167. · Zbl 1047.76111 · doi:10.1016/S0021-9991(03)00092-5
[36] N. Zabaras and B. Ganapathysubramanian, A scalable framework for the solution of stochastic inverse problems using a sparse grid collocation approach, J. Comput. Phys.227 (2008) 4697-4735. · Zbl 1142.65008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.