×

zbMATH — the first resource for mathematics

Novel modal methods for transient analysis with a reduced order model based on enhanced Craig-Bampton formulation. (English) Zbl 1428.74207
Summary: For transient analysis of structural dynamics with reduced order model (ROM), data recovery procedures that use modal methods such as the classical mode-acceleration (MA) and modal-displacement (MD) methods are an important step in order to increase the convergence and accuracy of the solution. In this work, we propose novel MA and MD methods for highly accurate transient analysis with a reduced order model based on enhanced Craig-Bampton (ECB) formulation, which is an extension of the classical Craig-Bampton (CB) method that is a way to reduce the size of a finite element (FE) model. The performance of the proposed data recovery approach is demonstrated with two numerical examples. We also investigate the relation between the proposed and classical MA and MD methods.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Udagedara, I.; Helenbrook, B.; Luttman, A.; Mitchell, S. E., Reduced order modeling for accelerated Monte Carlo simulations in radiation transport, Appl. Math. Comput., 267, 237-251 (2015) · Zbl 1410.82023
[2] Dimitriu, G.; Ştefănescu, R.; Navon, I. M., Comparative numerical analysis using reduced-order modeling strategies for nonlinear large-scale systems, J. Comput. Appl. Math., 310, 32-43 (2017) · Zbl 1348.92122
[3] Kalashnikova, I.; Barone, M. F.; Arunajatesan, S.; van Bloemen Waanders, B. G., Construction of energy-stable projection-based reduced order models, Appl. Math. Comput., 249, 569-596 (2014) · Zbl 1339.65174
[4] Colciago, C. M.; Deparis, S.; Quarteroni, A., Comparisons between reduced order models and full 3D models for fluid-structure interaction problems in haemodynamics, J. Comput. Appl. Math., 265, 120-138 (2014) · Zbl 1293.92008
[5] Song, H.; Jiang, L.; Li, Q., A reduced order method for Allen-Cahn equations, J. Comput. Appl. Math., 292, 213-229 (2016) · Zbl 1327.65245
[6] Karasözen, B.; Akkoyunlu, C.; Uzunca, M., Model order reduction for nonlinear Schrödinger equation, Appl. Math. Comput., 258, 509-519 (2015) · Zbl 1339.65123
[7] Pan, C. H.; Zhu, X. N.; Liu, Z. R., A simple approach for reducing the order of equations with higher order nonlinearity, Appl. Math. Comput., 218, 8702-8714 (2012) · Zbl 1245.35012
[8] Pereyra, V., Model order reduction with oblique projections for large scale wave propagation, J. Comput. Appl. Math., 295, 103-114 (2016) · Zbl 1329.86018
[9] Hurty, W. C., Dynamic analysis of structural systems using component modes, AIAA J., 3, 678-685 (1965)
[10] Craig, R. R.; Bampton, M. C., Coupling of substructures for dynamic analysis, AIAA J., 6, 1313-1319 (1968) · Zbl 0159.56202
[11] MacNeal, R. H., A hybrid method of component mode synthesis, Comput. Struct., 1, 581-601 (1971)
[12] Bennighof, J. K.; Lehoucq, R. B., An automated multilevel substructuring method for eigenspace computation in linear elastodynamics, SIAM J. Sci. Comput., 25, 2084-2106 (2004) · Zbl 1133.65304
[13] Park, K.; Park, Y. H., Partitioned component mode synthesis via a flexibility approach, AIAA J., 42, 1236-1245 (2004)
[14] Kim, J. G.; Lee, P. S., An enhanced Craig-Bampton method, Int. J. Numer. Methods Eng., 103, 79-93 (2015) · Zbl 1352.74378
[15] Kim, J. G.; Boo, S. H.; Lee, P. S., An enhanced AMLS method and its performance, Comput. Methods Appl. Mech. Eng., 287, 90-111 (2015) · Zbl 1425.65116
[16] Kim, J. G.; Markovic, D., High-fidelity flexibility-based component mode synthesis method with interface degrees of freedom reduction, AIAA J., 3619-3631 (2016)
[17] Dickens, J.; Nakagawa, J.; Wittbrodt, M., A critique of mode acceleration and modal truncation augmentation methods for modal response analysis, Comput. Struct., 62, 985-998 (1997) · Zbl 0900.70255
[18] Cornwell, R.; Craig, R.; Johnson, C., On the application of the mode‐acceleration method to structural engineering problems, Earthq. Eng. Struct. Dyn., 11, 679-688 (1983)
[19] Wang, S.; Choi, K., Continuum design sensitivity of transient responses using Ritz and mode acceleration methods, AIAA J., 30, 1099-1109 (1992)
[20] Rixen, D., Generalized mode acceleration methods and modal truncation augmentation, (19th AIAA Applied Aerodynamics Conference (2001)), 1300
[21] Fransen, S., An overview and comparison of OTM formulations on the basis of the mode displacement method and the mode acceleration method, (Worldwide Aerospace Conference & Technology Showcase (2002), MSC Software Corporation: MSC Software Corporation Toulouse, France), 8-10
[22] Fransen, S., Methodologies for launcher-payload coupled dynamic analysis, (Spacecraft Structures, Materials and Mechanical Testing 2005 (2005))
[23] Nastran, M., Basic Dynamic Analysis User’s Guide, 546 (2004), MSC. Software Corporation: MSC. Software Corporation USA
[24] Kim, J. G.; Han, J. B.; Lee, H.; Kim, S. S., Flexible multibody dynamics using coordinate reduction improved by dynamic correction, Multibody Syst. Dyn., 42, 4, 411-429 (2018) · Zbl 1425.70012
[25] Guyan, R. J., Reduction of stiffness and mass matrices, AIAA J., 3, 380 (1965)
[26] O’Callahan, J. C., A procedure for an improved reduced system (IRS) model, (Proceedings of the Seventh International Modal Analysis Conference (1989), Las Vegas), 17-21
[27] Kim, J. G.; Park, Y. J.; Lee, G. H.; Kim, D. N., A general model reduction with primal assembly in structural dynamics, Comput. Methods Appl. Mech. Eng., 324, 1-28 (2017)
[28] Kim, S. M.; Kim, J. G.; Chae, S. W.; Park, K., Evaluating mode selection methods for component mode synthesis, AIAA J., 54, 2852-2863 (2016)
[29] Kim, S. M.; Kim, J. G.; Park, K. C.; Chae, S. W., A component mode selection method based on a consistent perturbation expansion of interface displacement, Comput. Methods Appl. Mech. Eng., 330, 578-597 (2018)
[30] Chopra, A. K., Dynamics of Structures: Theory and Applications to Earthquake Engineering (2001), Prentice-Hall
[31] Nastran, M., R3 Quick Reference Guide (2008), MSC, Software Corporation
[32] Lim, J. H.; Hwang, D. S.; Kim, K. W.; Lee, G. H.; Kim, J. G., A coupled dynamic loads analysis of satellites with an enhanced Craig-Bampton approach, Aerosp. Sci. Technol., 69, 114-122 (2017)
[33] Hughes, T. J.R., The Finite Element method: Linear Static and Dynamic Finite Element Analysis (2000), Dover Publications · Zbl 1191.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.