×

Multi-objective optimization of the suspension system parameters of a full vehicle model. (English) Zbl 1428.90151

Summary: The development of a methodology that enables the optimization of passive suspension system parameters, providing a group of optimal solutions, could be an excellent approach to obtain a fast improvement tool during the design of suspension systems. Thus, this paper proposes a methodology for the multi-objective optimization of the passive suspension system of a full-car model travelling in a random road profile. For this purpose, a numerical-computational routine is developed, which integrates the NSGA-II with the vertical dynamic analysis, in the time domain, of an eight degrees-of-freedom vehicle model with a seat. Three objective functions, which take into account passenger comfort and safety, are considered. The proposed methodology provides a Pareto-optimal front, which consists of a set of non-dominated solutions that minimize the three objective functions. Comparing the results of the dynamic analyses of the vehicle model with optimized and non-optimized suspension systems, it was verified that the optimization allowed a reduction of up to 21.14% of the weighted RMS value of the driver seat vertical acceleration, a parameter directly related to comfort, while maintaining or improving the trade-off with safety. The Pareto-optimal front has proven to be an excellent support tool to aid the designer in the determination of the parameters that best fit the suspension system to produce the desired dynamic behavior in vehicles. Thus, the proposed optimization methodology can be recommended as an effective tool for the optimal design of passive suspension system parameters. Finally, this work shows that the design of suspension parameters can be done taking into account passenger comfort and safety at same time.

MSC:

90C29 Multi-objective and goal programming
90C90 Applications of mathematical programming

Software:

Krill herd; NSGA-II
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbas W, Emam A, Badran S, Shebl M, Abouelatta O (2013) Optimal seat and suspension design for a half-car with driver model using genetic algorithm. Lect Notes Control Inf 4(2):199-205
[2] Bianchi L, Dorigo M, Gambardella LM, Gutjahr WJ (2009) A survey on metaheuristics for stochastic combinatorial optimization. Nat Comput 8:239-287 · Zbl 1162.90591 · doi:10.1007/s11047-008-9098-4
[3] Braun H (1991) Meßergebnisse von straßenunebenheiten, VDI-Berichte 877, Düsseldorf, Germany
[4] Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut Comput 6(2):182-197 · doi:10.1109/4235.996017
[5] Dodds CJ, Robson JD (1973) The description of road surface roughness. J Sound Vib 31(2):175-183 · Zbl 0267.70011 · doi:10.1016/S0022-460X(73)80373-6
[6] Drehmer LRC, Casas WJP, Gomes HM (2015) Parameters optimisation of a vehicle suspension system using a particle swarm optimisation algorithm. Veh Syst Dyn 53:449-474 · doi:10.1080/00423114.2014.1002503
[7] Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the international symposium on micro machine and human science, Nagoya, Japan, 4-6 Oct
[8] Fadel Miguel LF, Lopez RH, Miguel LFF (2013) Multimodal size, shape, and topology optimisation of truss structures using the Firefly algorithm. Adv Eng Softw 56:23-37. https://doi.org/10.1016/j.advengsoft.2012.11.006 · doi:10.1016/j.advengsoft.2012.11.006
[9] Florea A, Cofaru II, Roman L, Cofaru N (2016) Applying the multi-objective optimization techniques in the design of suspension systems. J Digit Inf Manag 14(6):351-367
[10] Gadhvi B, Savsani V, Patel V (2016) Multi-objective optimization of vehicle passive suspension system using NSGA-II, SPEA2 and PESA-II. Procedia Technol 23:361-368 · doi:10.1016/j.protcy.2016.03.038
[11] Gandomi AH, Talatahari S, Tadbiri F, Alavi AH (2013) Krill herd algorithm for optimum design of truss structures. Int J Bio-Inspired Comput 5(5):281-288. https://doi.org/10.1504/ijbic.2013.057191 · doi:10.1504/ijbic.2013.057191
[12] Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization: harmony search. Simulation 76:60-68 · doi:10.1177/003754970107600201
[13] Gillespie TD (2010) Fundamentals of vehicle dynamics. Society of Automotive Engineers, Warrendale
[14] Gobbi M (2013) A k, k − ε optimality selection based multi objective genetic algorithm with applications to vehicle engineering. Optim Eng 14:345-360 · Zbl 1294.74053 · doi:10.1007/s11081-011-9185-8
[15] Gobbi M, Mastinu G (2001) Analytical description and optimization of the dynamic behaviour of passively suspended road vehicles. J Sound Vib 245(3):457-481 · doi:10.1006/jsvi.2001.3591
[16] Gobbi M, Levi F, Mastinu G (2006) Multi-objective stochastic optimisation of the suspension system of road vehicles. J Sound Vib 298(4-5):1055-1072 · doi:10.1016/j.jsv.2006.06.041
[17] Gobbi M, Guarneri P, Scala L, Scotti L (2014) A local approximation based multi-objective optimization algorithm with applications. Optim Eng 15:619-641 · Zbl 1364.90301 · doi:10.1007/s11081-012-9211-5
[18] Griffin MJ (1990) Handbook of human vibration. Elsevier Academic Press, London
[19] Guclu R (2005) Fuzzy logic control of seat vibrations of a non-linear full vehicle model. Nonlinear Dyn 40:21-34 · Zbl 1142.70338 · doi:10.1007/s11071-005-3815-7
[20] Guo P, Zhang JH (2017) Numerical model and multi-objective optimization analysis of vehicle vibration. J Zhejiang Univ-Sci A 18(5):393-412 · doi:10.1631/jzus.A1600124
[21] Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor · Zbl 0317.68006
[22] International Organization for Standardization, ISO 2631-1 (1997) Mechanical vibration and shock—evaluation of human exposure to whole-body vibration, Switzerland
[23] International Organization for Standardization, ISO 8608 (2016) Mechanical vibration—road surface profiles reporting of measured data, Switzerland
[24] Jamali A, Shams H, Fasihozaman M (2014) Pareto multi-objective optimum design of vehicle-suspension system under random road excitations. Proc Inst Mech Eng Part K J Multi-body Dyn 228(3):282-293
[25] Khalkhali A, Sarmadi M, Yousefi S (2017) Reliability-based robust multi-objective optimization of a 5-DOF vehicle vibration model subjected to random road profiles. J Cent South Univ 24(1):104-113 · doi:10.1007/s11771-017-3413-0
[26] Meng R, Xie NG, Wang L (2014) Multiobjective game method based on self-adaptative space division of design variables and its application to vehicle suspension. Math Probl Eng. https://doi.org/10.1155/2014/479272 · Zbl 1407.90298 · doi:10.1155/2014/479272
[27] Miguel LFF, Fadel Miguel LF (2012) Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms. Expert Syst Appl 39:9458-9467. https://doi.org/10.1016/j.eswa.2012.02.113 · doi:10.1016/j.eswa.2012.02.113
[28] Moradi A, Nafchi AM, Ghanbarzadeh A, Soodmand E (2011) Optimization of linear and nonlinear full vehicle model for improving ride comfort vs. road holding with the Bees Algorithm. In: Proceedings of the IEEE colloquium on humanities, science and engineering research, Penang, Malaysia, 5-6 Dec
[29] Nagarkar MP, Patil GJV, Patil RNZ (2016) Optimization of nonlinear quarter car suspension seat-driver model. J Adv Res 7(6):991-1007 · doi:10.1016/j.jare.2016.04.003
[30] Nariman-Zadeh N, Salehpour M, Jamali A, Haghgoo E (2010) Pareto optimization of a five-degree of freedom vehicle vibration model using a multi-objective uniform-diversity genetic algorithm (MUGA). Eng Appl Artif Intel 23(4):543-551 · doi:10.1016/j.engappai.2009.08.008
[31] Naudé AF, Snyman JA (2003a) Optimization of road vehicle passive suspension systems. Part 1. optimization algorithm and vehicle model. Appl Math Model 27:249-261 · Zbl 1055.90013 · doi:10.1016/S0307-904X(02)00120-8
[32] Naudé AF, Snyman JA (2003b) Optimization of road vehicle passive suspension systems. Part 2. qualification and case study. Appl Math Model 27:263-274 · Zbl 1055.90048 · doi:10.1016/S0307-904X(02)00121-X
[33] Ngwangwa HM, Heyns PS, Breytenbach HGA, Els PS (2014) Reconstruction of road defects and road roughness classification. J Terramech 53:1-18 · doi:10.1016/j.jterra.2014.03.002
[34] Sekulic D, Dedovic V, Rusov S, Salinic S, Obradovic A (2013) Analysis of vibration effects on the comfort of intercity bus users by oscillatory model with ten degrees of freedom. Appl Math Model 37:8629-8644 · Zbl 06951078 · doi:10.1016/j.apm.2013.03.060
[35] Shinozuka M, Jan CM (1972) Digital simulation of random process and its applications. J Sound Vib 25:111-118 · doi:10.1016/0022-460X(72)90600-1
[36] Shirahatt A (2015) Analysis and simulation of active suspension system for full vehicle model subjected to random road profile. Int J Innov Res Sci Eng Technol 4(1):18489-18502 · doi:10.15680/IJIRSET.2015.0401012
[37] Shirahatt A, Prasad PSS, Panzade P, Kulkarni MM (2008) Optimal design of passenger car suspension for ride and road holding. J Braz Soc Mech Sci 30(1):66-76 · doi:10.1590/S1678-58782008000100010
[38] Shojaeefard MH, Khalkhali A, Erfani PS (2014) Multiobjective suspension optimization of a 5-DOF vehicle vibration model excited by random road profile. Int J Adv Des Manuf Technol 7(1):1-7
[39] Song C, Zhao Y, Wang L, Niu L (2014) Multi-objective optimization design of passive suspension parameters based on competition-cooperation game model. Aust J Mech Eng 12(1):13-24 · doi:10.7158/M12-064.2014.12.1
[40] Wang L, Xie NG, Song CZ, Bao JH, Cen YW (2010) Multi-objective bionics design method of passive suspension parameters based on hybrid behavior game. Struct Multidiscip Opt 42(3):371-386 · doi:10.1007/s00158-010-0486-x
[41] Xie NG, Meng R, Ye Y, Wang L, Cen YW (2013) Multiobjective design method based on evolution game and its application for suspension. Struct Multidiscip Opt 47(2):207-220 · Zbl 1274.90366 · doi:10.1007/s00158-012-0815-3
[42] Yang XS (2010) Firefly algorithm, stochastic test functions and design optimization. Int J Bio-Inspired Comput 2(2):78-84 · doi:10.1504/IJBIC.2010.032124
[43] Yang XS, Deb S (2010) Engineering optimization by cuckoo search. Int J Math Model Numer Optim 1:330-343 · Zbl 1279.90204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.