Practical bandwidth selection in deconvolution kernel density estimation. (English) Zbl 1429.62125

Summary: Kernel estimation of a density based on contaminated data is considered and the important issue of how to choose the bandwidth parameter in practice is discussed. Some plug-in (PI) type of bandwidth selectors, which are based on non-parametric estimation of an approximation of the mean integrated squared error, are proposed. The selectors are a refinement of the simple normal reference bandwidth selector, which is obtained by parametrically estimating the approximated mean integrated squared error by referring to a normal density. A simulation study compares these PI bandwidth selectors with a bootstrap (BT) and a cross-validated (CV) bandwidth selector. It is concluded that in finite samples, an appropriately chosen PI bandwidth selector and the BT bandwidth selector perform comparably and both outperform the CV bandwidth. The use of the various practical bandwidth selectors is illustrated on a real data example.


62G07 Density estimation


Full Text: DOI


[1] Barry, J.; Diggle, P., Choosing the smoothing parameter in a Fourier approach to nonparametric deconvolution of a density function, Nonparametric statist., 4, 223-232, (1995) · Zbl 1380.62127
[2] Cao, R.; Cuevas, A.; González-Manteiga, W., A comparative study of several smoothing methods in density estimation, Comput. statist. data anal., 17, 153-176, (1994) · Zbl 0937.62518
[3] Carroll, R.J.; Hall, P., Optimal rates of convergence for deconvolving a density, J. amer. statist. assoc., 83, 1184-1186, (1988) · Zbl 0673.62033
[4] Carroll, R.J.; Ruppert, D.; Stefanski, L., Measurement error in nonlinear models, (1995), Chapman & Hall London · Zbl 0853.62048
[5] Davis, K.B., Mean square error properties of density estimators, Ann. statist., 3, 1025-1030, (1975) · Zbl 0311.62020
[6] Delaigle, A., 1999. Bandwidth selection in kernel estimation of a density when the data are contaminated by errors. Mémoire de DEA (Master Thesis), Institut de Statistique, Université catholique de Louvain, Belgium, http://www.stat.ucl.ac.be/ISpersonnel/delaigle/liens_en.htm#publications.
[7] Delaigle, A., Gijbels, I., 2001. Bootstrap bandwidth selection in kernel density estimation from a contaminated sample. Discussion Paper #0116, Institut de Statistique, Université catholique de Louvain, Belgium, http://www.stat.ucl.ac.be. · Zbl 1050.62038
[8] Delaigle, A.; Gijbels, I., Estimation of integrated squared density derivatives from a contaminated sample, J. roy. statist. soc., ser. B, 64, 869-886, (2002) · Zbl 1067.62034
[9] Devroye, L., Consistent deconvolution in density estimation, Canad. J. statist., 7, 235-239, (1989) · Zbl 0679.62029
[10] Fan, J., Asymptotic normality for deconvolution kernel density estimators, Sankhya A, 53, 97-110, (1991) · Zbl 0729.62034
[11] Fan, J., On the optimal rates of convergence for nonparametric deconvolution problems, Ann. statist., 19, 1257-1272, (1991) · Zbl 0729.62033
[12] Fan, J., Global behaviour of deconvolution kernel estimates, Statist. sinica, 1, 541-551, (1991) · Zbl 0823.62032
[13] Fan, J., Deconvolution with supersmooth distributions, Canad. J. statist., 20, 155-169, (1992) · Zbl 0754.62020
[14] Fan, J.; Koo, J.Y., Wavelet deconvolution, IEEE trans. inform. theory, 48, 734-747, (2002) · Zbl 1071.94511
[15] Hesse, C.H., Data-driven deconvolution, Nonparametric statist., 10, 343-373, (1999) · Zbl 0936.62038
[16] Jones, M.C.; Marron, J.S.; Sheather, S.J., Progress in data-based bandwidth selection for kernel density estimation, Comput. statist., 11, 337-381, (1996) · Zbl 0897.62037
[17] Marron, J.S.; Wand, M.P., Exact Mean integrated squared error, Ann. statist., 20, 712-736, (1992) · Zbl 0746.62040
[18] Neumann, M.H., On the effect of estimating the error density in nonparametric deconvolution, Nonparametric statist., 7, 307-330, (1997) · Zbl 1003.62514
[19] Park, B.; Marron, J.S., Comparison of data-driven bandwidth selectors, J. amer. statist. assoc., 85, 66-72, (1990)
[20] Sheather, S.J.; Jones, M.C., A reliable data-based bandwidth selection method for kernel density estimation, J. roy. statist. soc. ser. B, 53, 683-690, (1991) · Zbl 0800.62219
[21] Silverman, B.W., Density estimation for statistics and data analysis, (1986), Chapman & Hall London, New York · Zbl 0617.62042
[22] Stefanski, L.A., Rates of convergence of some estimators in a class of deconvolution problems, Statist. probab. lett., 9, 229-235, (1990) · Zbl 0686.62026
[23] Stefanski, L.; Carroll, R.J., Deconvoluting kernel density estimators, Statistics, 2, 169-184, (1990) · Zbl 0697.62035
[24] Tapia, R.A.; Thompson, J.R., Nonparametric density estimation, (1978), John Hopkins University Press Baltimore · Zbl 0449.62029
[25] Wand, M.P., Finite sample performance of deconvolving density estimators, Statist. probab. lett., 37, 131-139, (1998) · Zbl 0886.62048
[26] Wand, M.P.; Jones, M.C., Kernel smoothing, (1995), Chapman & Hall London, New York · Zbl 0854.62043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.