×

TURBINS: an immersed boundary, Navier-Stokes code for the simulation of gravity and turbidity currents interacting with complex topographies. (English) Zbl 1429.76018

Summary: An accurate, three-dimensional Navier-Stokes based immersed boundary code called TURBINS has been developed, validated and tested, for the purpose of simulating density-driven gravity and turbidity currents propagating over complex topographies. The code is second order accurate in space and third order in time, uses MPI, and employs a domain decomposition approach. It makes use of multigrid preconditioners and Krylov iterative solvers for the systems of linear equations obtained by the finite difference discretization of the governing equations. TURBINS utilizes the direct forcing variant of the immersed boundary approach and enforces the no-slip boundary condition via the first grid point inside the solid, which yields very accurate wall shear stress results. The results of test simulations are discussed for uniform flow around a circular cylinder, and for two- and three-dimensional lock-exchange gravity currents.

MSC:

76-06 Proceedings, conferences, collections, etc. pertaining to fluid mechanics
86A05 Hydrology, hydrography, oceanography
86-04 Software, source code, etc. for problems pertaining to geophysics
86-08 Computational methods for problems pertaining to geophysics
65Y05 Parallel numerical computation
35Q30 Navier-Stokes equations

Software:

BoomerAMG; PETSc; MPI; TURBINS
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Balay S, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H. PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.0.0 2008; Argonne National Laboratory.
[2] Balay S, Buschelman K, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H. PETSc Web page 2009. <http://www.mcs.anl.gov/petsc>.
[3] Birman, V.; Meiburg, E.; Kneller, B., The shape of submarine levees: exponential or power law?, J fluid mech, 619, 367-376, (2009) · Zbl 1156.76359
[4] Birman, V.K.; Battandier, B.A.; Meiburg, E.; Linden, P.F., Lock-exchange flows in sloping channels, J fluid mech, 577, 53-77, (2007) · Zbl 1178.76114
[5] Birman, V.K.; Martin, J.E.; Meiburg, E., The non-Boussinesq lock-exchange problem. part 2. high-resolution simulations, J fluid mech, 537, 125-144, (2005) · Zbl 1138.76345
[6] Blanchette, F.; Strauss, M.; Meiburg, E.; Kneller, B.; Glinsky, M., High-resolution numerical simulations of resuspending gravity currents: conditions for self-sustainment, J geophys res, 110, C12022, (2005)
[7] Bonnecaze, R.; Huppert, H.; Lister, J., Particle-driven gravity currents, J fluid mech, 250, 339-369, (1993)
[8] Cantero, M.I.; Garcı´a, M.H.; Balachandar, S., Effect of particle inertia on the dynamics of depositional particulate density currents, Comput geosci, 34, 10, 1307-1318, (2008)
[9] Chorin, A., Numerical solution of the navier – stokes equations, Math comput, 22, 104, 745-762, (1968) · Zbl 0198.50103
[10] Davis, R.H.; Hassen, M.A., Spreading of the interface at the top of a slightly polydisperse sedimenting suspension, J fluid mech, 196, 107-134, (1988)
[11] Dennis, S.C.R.; Chang, G.-Z., Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100, J fluid mech, 42, 3, 471-489, (1970) · Zbl 0193.26202
[12] Fadlun, E.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J comput phys, 161, 1, 35-60, (2000) · Zbl 0972.76073
[13] Fornberg, B., A numerical study of steady viscous flow past a circular cylinder, J fluid mech, 98, 4, 819-855, (1980) · Zbl 0428.76032
[14] Gonzalez-Juez, E.; Meiburg, E., Shallow-water analysis of gravity-current flows past isolated obstacles, J fluid mech, 635, 415-438, (2009) · Zbl 1183.76689
[15] Gonzalez-Juez, E.; Meiburg, E.; Tokyay, T.; Constantinescu, G., Gravity current flow past a circular cylinder: forces, wall shear stresses and implications for scour, J fluid mech, 649, 69-102, (2010) · Zbl 1189.76151
[16] Hall, B.; Meiburg, E.; Kneller, B., Channel formation by turbidity currents: navierstokes-based linear stability analysis, J fluid mech, 615, 185-210, (2008) · Zbl 1175.76060
[17] Ham, J.; Homsy, G., Hindered settling and hydrodynamic dispersion in quiescent sedimenting suspensions, Int J multiphase flow, 14, 5, 533-546, (1988)
[18] Harlow, F.; Welch, J., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys fluids, 8, 12, 2182-2189, (1965) · Zbl 1180.76043
[19] Härtel, C.; Carlsson, F.; Thunblom, M., Analysis and direct numerical simulation of the flow at a gravity-current head. part 2. the lobe-and-cleft instability, J fluid mech, 418, 213-229, (2000) · Zbl 1103.76337
[20] Härtel, C.; Meiburg, E.; Necker, F., Analysis and direct numerical simulation of the flow at a gravity-current head. part 1. flow topology and front speed for slip and no-slip boundaries, J fluid mech, 418, 189-212, (2000) · Zbl 0985.76042
[21] Harten, A., High resolution schemes for hyperbolic conservation laws, J comput phys, 135, 2, 260-278, (1997) · Zbl 0890.65096
[22] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S.R., Uniformly high order accurate essentially non-oscillatory schemes, III, J comput phys, 71, 2, 231-303, (1987) · Zbl 0652.65067
[23] Henson, V., Boomeramg: a parallel algebraic multigrid solver and preconditioner, Appl numer math, 41, 1, 155-177, (2002) · Zbl 0995.65128
[24] Hogg, A., Particle-driven gravity currents: asymptotic and box model solutions, European J mech - B/fluids, 19, 1, 139-165, (2000) · Zbl 0984.76093
[25] Huang, H.; Imran, J.; Pirmez, C., Numerical study of turbidity currents with sudden-release and sustained-inflow mechanisms, J hydraulic eng, 134, 9, 1199-1209, (2008)
[26] Iaccarino, G.; Verzicco, R., Immersed boundary technique for turbulent flow simulations, Appl mech rev, 56, 331-347, (2003)
[27] Kassem, A.; Imran, J., Three-dimensional modeling of density current. II. flow in sinuous confined and unconfined channels, J hydraulic res, 42, 6, 591-602, (2004)
[28] Kim, J.; Kim, D.; Choi, H., An immersed-boundary finite-volume method for simulations of flow in complex geometries, J comput phys, 171, 1, 132-150, (2001) · Zbl 1057.76039
[29] Kim, J.; Moin, P., Application of a fractional-step method to incompressible navier – stokes equations, J comput phys, 59, 2, 308-323, (1985) · Zbl 0582.76038
[30] Lesshafft L, Hall B, Meiburg E, Kneller B. Deep water sediment wave formation: linear stability analysis of coupled flow/bed interaction, J Fluid Mech, submitted for publication. · Zbl 1241.76225
[31] Marcu, B.; Meiburg, E., Three-dimensional features of particle dispersion in a nominally plane mixing layer, Phys fluids, 8, 9, 2266-2268, (1996) · Zbl 1027.76682
[32] Marcu, B.; Meiburg, E.; Newton, P., Dynamics of heavy particles in a Burgers vortex, Phys fluids, 7, 2, 400-410, (1995) · Zbl 0844.76036
[33] Martin, J.E.; Meiburg, E., The accumulation and dispersion of heavy particles in forced two-dimensional mixing layers. I. the fundamental and subharmonic cases, Phys fluids, 6, 3, 1116-1132, (1994) · Zbl 0829.76091
[34] Maxey, M.R.; Riley, J.J., Equation of motion for a small rigid sphere in a nonuniform flow, Phys fluids, 26, 4, 883-889, (1983) · Zbl 0538.76031
[35] Meiburg, E.; Kneller, B., Turbidity currents and their deposits, Ann rev fluid mech, 42, 1, 135-156, (2010) · Zbl 1345.76104
[36] Migeon, S.; Savoye, B.; Zanella, E.; Mulder, T.; Faugères, J.; Weber, O., Detailed seismic-reflection and sedimentary study of turbidite sediment waves on the var sedimentary ridge (SE France): significance for sediment transport and deposition and for the mechanisms of sediment-wave construction, Marine petroleum geol, 18, 2, 179-208, (2001)
[37] Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.M.; Vargas, A.; von Loebbecke, A., A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, J comput phys, 227, 10, 4825-4852, (2008) · Zbl 1388.76263
[38] Mittal, R.; Iaccarino, G., Immersed boundary methods, Ann rev fluid mech, 37, 1, 239-261, (2005) · Zbl 1117.76049
[39] Mohd-Yusof, J., Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries, CTR ann res briefs. NASA ames/Stanford university, 1, 317-327, (1997)
[40] Nakajima, T.; Satoh, M., The formation of large mudwaves by turbidity currents on the levees of the toyama deep-sea channel, Japan sea, Sedimentology, 48, 2, 435-463, (2001)
[41] Necker, F.; Härtel, C.; Kleiser, L.; Meiburg, E., High-resolution simulations of particle-driven gravity currents, Int J multiphase flow, 28, 2, 279-300, (2002) · Zbl 1136.76590
[42] Necker, F.; Härtel, C.; Kleiser, L.; Meiburg, E., Mixing and dissipation in particle-driven gravity currents, J fluid mech, 545, 339-372, (2005) · Zbl 1085.76559
[43] Normark, W.; Piper, D.; Posamentier, H.; Pirmez, C.; Migeon, S., Variability in form and growth of sediment waves on turbidite channel levees, Marine geol, 192, 23-58, (2002)
[44] O’Rourke, J., Computational geometry in C, (1998), Cambridge University Press · Zbl 0912.68201
[45] Osher, S., Level set methods: an overview and some recent results, J comput phys, 169, 2, 463-502, (2001) · Zbl 0988.65093
[46] Osher, S.; Sethian, J., Fronts propagating with curvature-dependent speed: algorithms based on hamilton – jacobi formulations, J comput phys, 79, 1, 12-49, (1988) · Zbl 0659.65132
[47] Park, J.; Kwon, K.; Choi, H., Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160, J mech sci technol, 12, 6, 1200-1205, (1998)
[48] Peskin, C., Numerical analysis of blood flow in the heart, J comput phys, 25, 3, 220-252, (1977) · Zbl 0403.76100
[49] Posdziech, O.; Grundmann, R., A systematic approach to the numerical calculation of fundamental quantities of the two-dimensional flow over a circular cylinder, J fluids struct, 23, 3, 479-499, (2007)
[50] Raju, N.; Meiburg, E., The accumulation and dispersion of heavy particles in forced two-dimensional mixing layers. part 2: the effect of gravity, Phy fluids, 7, 6, 1241-1264, (1995) · Zbl 1023.76585
[51] Raju, N.; Meiburg, E., Dynamics of small, spherical particles in vortical and stagnation point flow fields, Phy fluids, 9, 6, 299-314, (1997)
[52] Russo, G., A remark on computing distance functions, J comput phys, 163, 1, 51-67, (2000) · Zbl 0964.65089
[53] Saad, Y., Iterative methods for sparse linear systems, (2003), SIAM · Zbl 1002.65042
[54] Schiesser, W.E., The numerical method of lines: integration of partial differential equations, (1991), Academic Press · Zbl 0763.65076
[55] Syvitski, J.; Alexander, C.; Field, M.; Gardner, J.; Orange, D.; Yun, J., Continental-slope sedimentation: the view from northern California, Oceanography, 9, 3, 163-167, (1996)
[56] Tseng, Y.; Ferziger, J., A ghost-cell immersed boundary method for flow in complex geometry, J comput phys, 192, 2, 593-623, (2003) · Zbl 1047.76575
[57] Verzicco, R.; Fatica, M.; Iaccarino, G.; Orlandi, P., Flow in an impeller-stirred tank using an immersed-boundary method, Aiche j, 50, 6, 1109-1118, (2004)
[58] Vinokur, M., On one-dimensional stretching functions for finite-difference calculations, J comput phys, 50, 2, 215-234, (1983) · Zbl 0505.76006
[59] Williamson, C.H.K., Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers, J fluid mech, 206, 579-627, (1989)
[60] Williamson, C.H.K., Vortex dynamics in the cylinder wake, Ann rev fluid mech, 28, 1, 477-539, (1996) · Zbl 0899.76129
[61] Wynn, R.; Masson, D.; Stow, D.; Weaver, P., Turbidity current sediment waves on the submarine slopes of the western Canary Islands, Marine geol, 163, 1-4, 185-198, (2000)
[62] Wynn, R.; Stow, D., Classification and characterisation of deep-water sediment waves, Marine geol, 192, 7-22, (2002)
[63] Yang, U., Parallel algebraic multigrid methods – high performance preconditioners, Numer sol partial differen equa parallel comput, 209-236, (2006) · Zbl 1097.65125
[64] Ye, T.; Mittal, R.; Udaykumar, H.; Shyy, W., An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries, J comput phys, 156, 2, 209-240, (1999) · Zbl 0957.76043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.