×

zbMATH — the first resource for mathematics

A second order characteristics finite element scheme for natural convection problems. (English) Zbl 1429.76098
Summary: In this paper a second order characteristics finite element scheme is applied to the numerical solution of natural convection problems. Firstly, after recalling the mathematical model, a second order time discretization of the material time derivative is introduced. Next, fully discretized schemes are proposed by using finite element methods. Numerical results for the two-dimensional problem of buoyancy-driven flow in a square cavity with differentially heated side walls are given and compared with a reference solution.

MSC:
76R10 Free convection
76M10 Finite element methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Douglas, J.; Russell, T.F., Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. numer. anal., 19, 871-885, (1982) · Zbl 0492.65051
[2] Pironneau, O., On the transport-diffusion algorithm and its applications to the navier – stokes equations, Numer. math., 38, 309-332, (1982) · Zbl 0505.76100
[3] Bercovier, M.; Pironneau, O.; Sastri, V., Finite elements and characteristics for some parabolic – hyperbolic problems, Appl. math. modelling, 7, 89-96, (1983) · Zbl 0505.65055
[4] Bermúdez, A.; Durany, J., Numerical solution of steady-state flow through a porous dam, Comput. methods appl. mech. engrg., 68, 55-65, (1988) · Zbl 0626.76098
[5] Morton, K.W.; Priestley, A.; Süli, E., Stability of the lagrange – galerkin method with non-exact integration, M2AN math. model. numer. anal., 22, 625-653, (1988) · Zbl 0661.65114
[6] Süli, E., Stability and convergence of the lagrange – galerkin method with non-exact integration, (), 435-442
[7] Süli, E., Convergence and nonlinear stability of the lagrange – galerkin method for the navier – stokes equations, Numer. math., 53, 459-483, (1988) · Zbl 0637.76024
[8] Pironneau, O.; Liou, J.; Tezduyar, T., Characteristic Galerkin and Galerkin/least-squares space – time formulations for the advection – diffusion equations with time-dependent domains, Comput. methods appl. mech. engrg., 100, 117-141, (1992) · Zbl 0761.76073
[9] Süli, E.; Ware, A., A spectral method of characteristics for hyperbolic problems, SIAM J. numer. anal., 28, 423-445, (1991) · Zbl 0743.65080
[10] Baker, M.D.; Süli, E.; Ware, A.F., Stability and convergence of the spectral lagrange – galerkin method for mixed periodic/non-periodic convection-dominated diffusion problems, IMA J. numer. anal., 19, 637-663, (1999) · Zbl 0962.65083
[11] Baranger, J.; Machmoum, A., Une norme naturelle pour la méthode des caractéristiques en éléments finis discontinus: cas 1-D, RAIRO modél. math. anal. numér., 30, 549-574, (1996) · Zbl 0862.65050
[12] Baranger, J.; Esslaoui, D.; Machmoum, A., Error estimate for convection problem with characteristics method, Numer. algorithms, 21, 49-56, (1999), Numerical methods for partial differential equations (Marrakech, 1998) · Zbl 0954.76039
[13] Baranger, J.; Machmoum, A., A natural norm for the method of characteristics using discontinuous finite elements: 2D and 3D case, Math. modelling numer. anal., 33, 1223-1240, (1999) · Zbl 0948.65094
[14] Douglas, J.; Huang, C.-S.; Pereira, F., The modified method of characteristics with adjusted advection, Numer. math., 83, 353-369, (1999) · Zbl 0936.65115
[15] Bause, M.; Knabner, P., Uniform error analysis for lagrange – galerkin approximations of convection-dominated problems, SIAM J. numer. anal., 39, 1954-1984, (2002) · Zbl 1014.65087
[16] Bermúdez, A.; Durany, J., La methode des caracteristiques pour des problemes de convection – diffusion stationnaires, M2AN math. model. numer. anal., 21, 7-26, (1987) · Zbl 0613.65121
[17] Rui, H.; Tabata, M., A second order characteristic finite element scheme for convection – diffusion problems, Numer. math., 92, 161-177, (2002) · Zbl 1005.65114
[18] Bermúdez, A.; Nogueiras, M.R.; Vázquez, C., Numerical solution of (degenerated) convection – diffusion – reaction problems with higher order characteristics/finite elements. part I: time discretization, SIAM J. numer. anal., 44, 1829-1853, (2006) · Zbl 1126.65080
[19] Bermúdez, A.; Nogueiras, M.R.; Vázquez, C., Numerical solution of (degenerated) convection – diffusion – reaction problems with higher order characteristics/finite elements. part II: fully discretized scheme and quadrature formulas, SIAM J. numer. anal., 44, 1854-1876, (2006) · Zbl 1126.65081
[20] Ewing, R.E.; Russel, T.F., Multistep Galerkin methods along characteristics for convection – diffusion problems, (), 28-36
[21] Boukir, K.; Maday, Y.; Métivet, B.; Razafindrakoto, E., A high-order characteristics/finite element method for the incompressible navier – stokes equations, Internat. J. numer. methods fluids, 25, 1421-1454, (1997) · Zbl 0904.76040
[22] Chenoweth, D.R.; Paolucci, S., Natural convection in an enclosed vertical air layer with large horizontal temperature differences, J. fluid mech., 169, 173-210, (1986) · Zbl 0623.76097
[23] de Vahl Davis, G., Natural convection of air in a square cavity: a benchmark numerical solution, Internat. J. numer. methods fluids, 3, 249-264, (1983) · Zbl 0538.76075
[24] Bermúdez, A., ()
[25] L.D. Landau, E.M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics, vol. 6, Oxford, 1982.
[26] Schlichting, H.; Gersten, K., Boundary layer theory, (2004), Springer-Verlag
[27] Priestley, A., Exact projections and the lagrange – galerkin method: a realistic alternative to cuadrature, J. comput. phys., 112, 316-333, (1994) · Zbl 0809.65097
[28] G. Fourestey, Stabilité des méthodes de Lagrange-Galerkin du premier et du second ordre, Tech. Report, INRIA, Raport de Recherche, 2002.
[29] M. Tabata, S. Fujima, Robustness of a characteristic finite element scheme of second order in time increment, Tech. Report, MHF Preprint Series, 2004.
[30] C. Parés, Éstude mathématique et approximation numérique de quelques ploblèmes aux limites de la mécanique des fluides incompressibles, Thèse, Université Paris VI, 1992.
[31] Massarotti, N.; Nithiarasu, P.; Zienkiewich, O.C., Characteristic-based-split (CBS) algorithm for incompressible flow problems with heat transfer, Internat. J. numer. methods heat fluid flow, 8, 969-990, (1998) · Zbl 0951.76042
[32] Manzari, M.T., An explicit finite element algorithm for convective heat transfer problems, Internat. J. numer. methods heat fluid flow, 9, 860-877, (1999) · Zbl 0955.76050
[33] Wan, D.C.; Patnaik, B.S.V.; Wei, G.W., A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution, part B, Numer. heat transfer, 40, 199-228, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.