×

How memory cost, switching cost, and payoff non-linearity affect the evolution of persistence. (English) Zbl 1429.91041

Summary: Cooperation is a behavior which is costly to the actor and beneficial for the recipient. While in one-shot game, cooperation is not favored by natural selection, in repeated interactions, cooperation can be favored by natural selection if cooperators cooperate conditionally. Previous studies have revealed that retaliation, (imitate the opponent’s behavior) and persistence, (imitate its own behavior) can promote the evolution of cooperation. Here, it is considered that a player has to remember its own behavior in order to behave persistently, and that a less switching cost is imposed to a persistent player. In this paper, we incorporate these costs and reexamine the effect of persistence on the evolution of cooperation. We have revealed that when memory cost is present, behaving persistently is not beneficial for its evolution, and that when switching cost is present, the evolution of persistence is more likely. Additionally, we also investigate the evolution of persistence in the case where payoff is not linear.

MSC:

91A20 Multistage and repeated games
91A22 Evolutionary games
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hamilton, W. D., The genetical evolution of social behaviour I, II, J. Theor. Biol., 7, 1-52 (1964)
[2] Trivers, R., The evolution of reciprocal altruism, Q. Rev. Biol, 46, 35-57 (1971)
[3] Nowak, M. A., Five rules for the evolution of cooperation, Science, 314, 1560-1563 (2006)
[4] Perc, M.; Jordan, J. J.; Rand, D. G.; Wang, Z.; Boccaletti, S.; Szolnoki, A., Statistical physics of human cooperation, Phys. Rep., 687, 1-51 (2017) · Zbl 1366.80006
[5] Nowak, M. A.; Sigmund, K., Evolution of indirect reciprocity by image scoring, Nature, 393, 573-577 (1998)
[6] Williams, G. C.; Williams, D. C., Natural selection of individually harmful social adaptations among sibs with special reference to social insects, Evolution, 11, 32-39 (1957)
[7] Nowak, M. A.; May, R. M., Evolutionary games and spatial chaos, Nature, 359, 826-829 (1992)
[8] Ohtsuki, H.; Hauert, C.; Lieberman, E.; Nowak, M. A., A simple rule for the evolution of cooperation on graphs and social networks, Nature, 441, 502-505 (2006)
[9] Li, X.; Jusup, M.; Wang, Z.; Li, H.; Shi, L.; Podobnik, B.; Stanley, H. E.; Havlin, S.; Boccaletti, S., Punishment diminishes the benefits of network reciprocity in social dilemma experiments, Proc. Natl. Acad. Sci. U.S.A., 115, 1, 30-35 (2018)
[10] Shen, C.; Chu, C.; Guo, H.; Shi, L.; Duan, J., Coevolution of vertex weights resolves social dilemma in spatial networks, Sci. Rep., 7, 15213 (2017)
[11] Shen, C.; Chu, C.; Shi, L.; Perc, M.; Wang, Z., Aspiration-based coevolution of link weight promotes cooperation in the spatial prisoner’s dilemma game, R. Soc. open Sci, 5, Article 180199 pp. (2018)
[12] Nowak, M. A., Stochastic strategies in the prisoner’s dilemma, Theor. Popul. Biol., 38, 1, 93-112 (1990) · Zbl 0726.92015
[13] Nowak, M. A.; Sigmund, K.; El-Sedy, E., Automata, repeated games and noise, J. Math. Biol., 33, 703-722 (1995) · Zbl 0837.90140
[14] Press, W. H.; Dyson, F. J., Iterated prisoner’s dilemma contains strategies that dominate any evolutionary opponent, Proc. Natl. Acad. Sci. U.S.A., 109, 10409-10413 (2012) · Zbl 1264.91009
[15] Hilbe, C.; Chatterjee, K.; Nowak, M. A., Partners and rivals in direct reciprocity, Nat. Hum. Behav., 2, 7, 469-477 (2018)
[16] Maynard Smith, J., Evolution and the Theory of Games (1982), Cambridge University Press · Zbl 0526.90102
[17] May, R. M., More evolution of cooperation, Nature, 327, 15-17 (1987)
[18] Sigmund, K., The calculus of selfishness (2010), Princeton University Press · Zbl 1189.91010
[19] Kurokawa, S., Payoff non-linearity sways the effect of mistakes on the evolution of reciprocity, Math. Biosci., 279, 63-70 (2016) · Zbl 1346.92081
[20] Larose, K.; Dubois, F., Constraints on the evolution of reciprocity: an experimental test with zebra finches, Ethology, 117, 2, 115-123 (2011)
[21] Stevens, J. R.; Hauser, M. D., Why be nice? Psychological constraints on the evolution of cooperation, Trends Cogn. Sci., 8, 2, 60-65 (2004)
[22] Stevens, J. R.; Cushman, F. A.; Hauser, M. D., Evolving the psychological mechanisms for cooperation, Annu. Rev. Ecol. Evol. Syst., 36, 499-518 (2005)
[23] Axelrod, R.; Dion, D., The further evolution of cooperation, Science, 242, 1385-1390 (1988)
[24] McElreath, R.; Boyd, R., Mathematical Models of Social Evolution: A Guide for the Perplexed (2007), The University of Chicago Press · Zbl 1143.91001
[25] Boerlijst, M. C.; Nowak, M. A.; Sigmund, K., The logic of contrition, J. Theor. Biol., 185, 281−293 (1997)
[26] Kollock, P., An eye for an eye leaves everyone blind: Cooperation and accounting systems, Am. Sociol. Rev., 58, 768−786 (1993)
[27] Miller, J. H., The coevolution of automata in the repeated prisoner’s dilemma, J. Econ. Behav. Organ., 29, 87-112 (1996)
[28] Brandt, H.; Sigmund, K., The good, the bad and the discriminator-Errors in direct and indirect reciprocity, J. Theor. Biol., 239, 183-194 (2006) · Zbl 1446.91022
[29] S. Bowles, H. Gintis, A Cooperative Species: Human Reciprocity and Its Evolution, Princeton University Press, 2011.; S. Bowles, H. Gintis, A Cooperative Species: Human Reciprocity and Its Evolution, Princeton University Press, 2011.
[30] Panchanathan, K.; Boyd, R., A tale of two defectors: the importance of standing for the evolution of indirect reciprocity, J. Theor. Biol., 224, 115-126 (2003) · Zbl 1465.92077
[31] Panchanathan, K.; Boyd, R., Indirect reciprocity can stabilize cooperation without the second-order free rider problem, Nature, 432, 499-502 (2004)
[32] Kurokawa, S., Does imperfect information always disturb the evolution of reciprocity?, Lett. Evol. Behav. Sci., 7, 14-16 (2016)
[33] Kurokawa, S., Imperfect information facilitates the evolution of reciprocity, Math. Biosci., 276, 114-120 (2016) · Zbl 1341.92049
[34] Kurokawa, S., Unified and simple understanding for the evolution of conditional cooperators, Math. Biosci., 282, 16-20 (2016) · Zbl 1352.92105
[35] Kurokawa, S., Evolutionary stagnation of reciprocators, Anim. Behav., 122, 217-225 (2016)
[36] Kurokawa, S., Persistence extends reciprocity, Math. Biosci., 286, 94-103 (2017) · Zbl 1366.92136
[37] Kurokawa, S., The extended reciprocity: Strong belief outperforms persistence, J. Theor. Biol., 421, 16-27 (2017) · Zbl 1370.92108
[38] Kurokawa, S.; Ihara, Y., Evolution of group-wise cooperation: Is direct reciprocity insufficient?, J. Theor. Biol., 415, 20-31 (2017) · Zbl 1368.92146
[39] Axelrod, R.; Hamilton, W. D., The evolution of cooperation, Science, 211, 1390−1396 (1981) · Zbl 1225.92037
[40] Lipman, B. L.; Wang, R., Switching costs in frequently repeated games, J. Econ. Theory, 93, 149-190 (2000) · Zbl 1145.91316
[41] Lipman, B. L.; Wang, R., Switching costs in infinitely repeated games, Games Econ. Behav., 66, 1, 292−314 (2009) · Zbl 1161.91319
[42] Imhof, L. A.; Fudenberg, D.; Nowak, M. A., Evolutionary cycles of cooperation and defection, Proc. Natl. Acad. Sci. U.S.A., 102, 31, 10797-10800 (2005)
[43] Cavalli-Sforza, L. L.; Feldman, M. W., Darwinian selection and “altruism”, Theor. Popul. Biol., 14, 2, 268−280 (1978) · Zbl 0432.92017
[44] Maynard Smith, J., Models of the evolution altruism, Theor. Popul. Biol., 18, 2, 151−159 (1980) · Zbl 0441.92008
[45] Queller, D. C., Kinship, reciprocity and synergism in the evolution of social behavior, Nature, 318, 366−367 (1985)
[46] St-Pierre, A.; Larose, K.; Dubois, F., Long-term social bonds promote cooperation in the iterated Prisoner’s Dilemma, Proc. R. Soc. Lond. B. Biol. Sci., 276, 4223-4228 (2009)
[47] Doebeli, M.; Knowlton, N., The evolution of interspecific mutualisms, Proc. Natl. Acad. Sci. U.S.A., 95, 8676-8680 (1998)
[48] Nowak, M. A.; Sigmund, K., A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner’s Dilemma game, Nature, 364, 56-58 (1993)
[49] Joshi, N. V., Evolution of cooperation by reciprocation within structured demes, J. Genet., 6, 69−84 (1987)
[50] Boyd, R.; Richerson, P. J., The evolution of reciprocity in sizable groups, J. Theor. Biol., 132, 337−356 (1988)
[51] Kurokawa, S.; Ihara, Y., Emergence of cooperation in public goods games, Proc. R. Soc. Lond. B. Biol. Sci., 276, 1379-1384 (2009)
[52] Kurokawa, S.; Ihara, Y., Evolution of social behavior in finite populations: a payoff transformation in general \(n\)-player games and its implications, Theor. Popul. Biol., 84, 1-8 (2013) · Zbl 1275.92079
[53] Kurokawa, S.; Wakano, J. Y.; Ihara, Y., Generous cooperators can outperform non-generous cooperators when replacing a population of defectors, Theor. Popul. Biol., 77, 257-262 (2010) · Zbl 1403.91034
[54] Deng, K.; Li, Z.; Kurokawa, S.; Chu, T., Rare but severe concerted punishment that favors cooperation, Theor. Popul. Biol., 81, 284-291 (2012) · Zbl 1418.91127
[55] Gokhale, C. S.; Traulsen, A., Evolutionary games in the multiverse, Proc. Natl. Acad. Sci. U.S.A., 107, 5500-5504 (2010)
[56] Hilbe, C.; Wu, B.; Traulsen, A.; Nowak, M. A., Cooperation and control in multiplayer social dilemmas, Proc. Natl. Acad. Sci. U.S.A., 111, 16425-16430 (2014)
[57] Hilbe, C.; Wu, B.; Traulsen, A.; Nowak, M. A., Evolutionary performance of zero-determinant strategies in multiplayer games, J. Theor. Biol., 374, 115-124 (2015) · Zbl 1341.91018
[58] Broom, M.; Lafaye, C.; Pattni, K.; Rychtář, J., A study of the dynamics of multi-player games on small networks using territorial interactions, J. Math. Biol., 71, 6, 1551-1574 (2015) · Zbl 1338.91024
[59] Du, J.; Wu, B.; Altrock, P. M.; Wang, L., Aspiration dynamics of multiplayer games in finite populations, J R Soc Interface, 11, Article 20140077 pp. (2014)
[60] Cao, X.-B.; Du, W.-B.; Rong, Z.-H., The evolutionary public goods game on scale-free networks with heterogeneous investment, Physica A, 389, 1273-1280 (2010)
[61] Gao, J.; Li, Z.; Wu, T.; Wang, L., Diversity of contribution promotes cooperation in public goods games, Physica A, 389, 3166-3171 (2010)
[62] Lei, C.; Wu, T.; Jia, J.-Y.; Cong, R.; Wang, L., Heterogeneity of allocation promotes cooperation in public goods games, Physica A, 389, 4708-4714 (2010)
[63] Zhang, H.; Yang, H.; Du, W.; Wang, B.; Cao, X., Evolutionary public goods games on scale-free networks with unequal payoff allocation mechanism, Physica A, 389, 1099-1104 (2010)
[64] Chen, M.-H.; Wang, L.; Wang, J.; Sun, S.-W.; Xia, C.-Y., Impact of individual response strategy on the spatial public goods game within mobile agents, Appl. Math. Comput., 251, 192-202 (2015) · Zbl 1328.91095
[65] Chen, M.-H.; Wang, L.; Sun, S.-W.; Wang, J.; Xia, C.-Y., Evolution of cooperation in the spatial public goods game with adaptive reputation assortment, Phys. Lett. A, 380, 40-47 (2016) · Zbl 1377.91030
[66] Xia, C.-Y.; Meloni, S.; Moreno, Y., Effects of environment knowledge on agglomeration and cooperation in spatial public goods games, Adv. Complex Syst., 15, Article 1250056 pp. (2012)
[67] Rapoport, A.; Chammah, A. M., Prisoner’s Dilemma: A Study in Conflict and Cooperation (1965), University of Michigan Press
[68] Wedekind, C.; Milinski, M., Human cooperation in the simultaneous and the alternating Prisoner’s Dilemma: Pavlov versus Generous Tit-for-Tat, Proc. Natl. Acad. Sci. U.S.A., 93, 2686-2689 (1996)
[69] Milinski, M.; Wedekind, C., Working memory constrains human cooperation in the Prisoner’s Dilemma, Proc. Natl. Acad. Sci. U.S.A., 95, 13755-13758 (1998)
[70] Scheibehenne, B.; Wilke, A.; Todd, P. M., Expectations of clumpy resources influence predictions of sequential events, Evol. Hum. Behav., 32, 5, 326-333 (2011)
[71] Wang, Z.; Xu, B.; Zhou, H-J., Social cycling and conditional responses in the Rock-Paper-Scissors game, Sci. Rep., 4, 5830 (2014)
[72] Allen, B.; Nowak, M. A., Games among relatives revisited, J. Theor. Biol., 378, 103−116 (2015) · Zbl 1343.91004
[73] Allen, B.; Nowak, M. A.; Wilson, E. O., Limitations of inclusive fitness, Proc. Natl. Acad. Sci. U.S.A., 110, 20135-20139 (2013) · Zbl 1355.91057
[74] West, S. A.; Griffin, A. S.; Gardner, A., Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection, J. Evol. Biol., 20, 2, 415-432 (2007)
[75] Queller, D. C., Kin selection and frequency dependence: a game theoretic approach, Biol. J. Linn Soc. Lond., 23, 133-143 (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.