×

Tree-structured modelling of varying coefficients. (English) Zbl 1430.62164

Summary: The varying-coefficient model is a strong tool for the modelling of interactions in generalized regression. It is easy to apply if both the variables that are modified as well as the effect modifiers are known. However, in general one has a set of explanatory variables, and it is unknown which covariates are modified by which variables. A recursive partitioning strategy is proposed that is able to deal with this complex selection problem. The tree-structured modelling yields for each covariate, which is modified by other variables, a tree that visualizes the modified effects. The performance of the method is investigated in simulations, and two applications illustrate its usefulness.

MSC:

62J12 Generalized linear models (logistic models)
05C90 Applications of graph theory

Software:

AER; R; TSVC
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Berger, M.: TSVC: Tree-Structured Modelling of Varying Coefficients. R package version, vol. 1 (2018)
[2] Breiman, L., Friedman, J.H., Olshen, R.A., Stone, J.C.: Classification and Regression Trees. Wadsworth, Monterey (1984) · Zbl 0541.62042
[3] Bürgin, R.; Ritschard, G., Tree-based varying coefficient regression for longitudinal ordinal responses, Comput. Stat. Data Anal., 86, 65-80, (2015) · Zbl 1468.62033
[4] Bürgin, R.; Ritschard, G., Coefficient-wise tree-based varying coefficient regression with vcrpart, J. Stat. Softw., 80, 1-33, (2017)
[5] Cameron, AC; Trivedi, PK, Econometric models based on count data: comparisons and applications of some estimators and tests, J. Appl. Econom., 1, 29-53, (1986)
[6] Cameron, A.C., Trivedi, P.K.: Regression Analysis of Count Data. Econometric Society Monographs No. 30. Cambridge University Press, Cambridge (1998)
[7] Fan, J.; Zhang, W., Statistical estimation in varying coefficient models, Ann. Stat., 27, 1491-1518, (1999) · Zbl 0977.62039
[8] Fan, J.; Zhang, W., Statistical methods with varying coefficient models, Stat. Interface, 1, 179-195, (2008) · Zbl 1230.62031
[9] Gerfin, M., Parametric and semi-parametric estimation of the binary response model of labour market participation, J. Appl. Econom., 11, 321-339, (1996)
[10] Gertheiss, J.; Tutz, G., Regularization and model selection with categorial effect modifiers, Stat. Sin., 22, 957-982, (2012) · Zbl 1257.62078
[11] Hastie, T.; Tibshirani, R., Varying-coefficient models, J. R. Stat. Soc. B, 55, 757-796, (1993) · Zbl 0796.62060
[12] Hofner, B.; Hothorn, T.; Kneib, T., Variable selection and model choice in structured survival models, Comput. Stat., 28, 1079-1101, (2013) · Zbl 1305.65043
[13] Hoover, D.; Rice, JA; Wu, C.; Yang, L., Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data, Biometrika, 85, 809-822, (1998) · Zbl 0921.62045
[14] Hothorn, T.; Lausen, B., On the exact distribution of maximally selected rank statistics, Comput. Stat. Data Anal., 43, 121-137, (2003) · Zbl 1429.62542
[15] Hothorn, T.; Hornik, K.; Zeileis, A., Unbiased recursive partitioning: a conditional inference framework, J. Comput. Graph. Stat., 15, 651-674, (2006)
[16] Kauermann, G.; Tutz, G., Local likelihood estimation in varying coefficient models including additive bias correction, J. Nonparametric Stat., 12, 343-371, (2000) · Zbl 0945.62044
[17] Kleiber, C., Zeileis, A.: Applied Econometrics with R. New York. ISBN: 978-0-387-77316-2. http://CRAN.R-project.org/package=AER (2008) · Zbl 1155.91004
[18] Leng, C., A simple approach for varying-coefficient model selection, J. Stat. Plan. Inference, 139, 2138-2146, (2009) · Zbl 1160.62067
[19] Lu, Y.; Zhang, R.; Zhu, L., Penalized spline estimation for varying-coefficient models, Commun. Stat. Theory Methods, 37, 2249-2261, (2008) · Zbl 1143.62023
[20] Oelker, MR; Gertheiss, J.; Tutz, G., Regularization and model selection with categorical predictors and effect modifiers in generalized linear models, Stat. Model., 14, 157-177, (2014)
[21] Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (1996) · Zbl 0853.62046
[22] Shih, YS, A note on split selection bias in classification trees, Comput. Stat. Data Anal., 45, 457-466, (2004) · Zbl 1429.62264
[23] Shih, YS; Tsai, H., Variable selection bias in regression trees with constant fits, Comput. Stat. Data Anal., 45, 595-607, (2004) · Zbl 1429.62725
[24] Su, X.; Meneses, K.; McNees, P.; Johnson, WO, Interaction trees: exploring the differential effects of an intervention programme for breast cancer survivors, J. R. Stat. Soc. C, 60, 457-474, (2011)
[25] Wang, H.; Xia, Y., Shrinkage estimation of the varying coefficient model, J. Am. Stat. Assoc., 104, 747-757, (2009) · Zbl 1388.62213
[26] Wang, JC; Hastie, T., Boosted varying-coefficient regression models for product demand prediction, J. Comput. Graph. Stat., 23, 361-382, (2014)
[27] Wang, L.; Li, H.; Haung, J., Variable selection in nonparametric varying-coefficient models for analysis of repeated measurements, J. Am. Stat. Assoc., 103, 1556-1569, (2008) · Zbl 1286.62034
[28] Wedderburn, RWM, Quasilikelihood functions, generalized linear models and the Gauss-Newton method, Biometrika, 61, 439-447, (1974) · Zbl 0292.62050
[29] Wong, H.; Guo, S.; Chen, M.; Wai-Cheung, IP, On locally weighted estimation and hypothesis testing of varying-coefficient models with missing covariates, J. Stat. Plan. Inference, 139, 2933-2951, (2009) · Zbl 1170.62028
[30] Wu, C.; Chiang, C.; Hoover, D., Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data, J. Am. Stat. Assoc., 93, 1388-1402, (1998) · Zbl 1064.62523
[31] Zhao, P.; Xue, L., Variable selection for semiparametric varying coefficient partially linear models, Stat. Probab. Lett., 79, 2148-2157, (2009) · Zbl 1171.62026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.