×

Probing top quark FCNC tq\(\gamma\) and tqZ couplings at future electron-proton colliders. (English) Zbl 1430.81083

Summary: The top quark flavor changing neutral current (FCNC) processes are extremely suppressed within the Standard Model (SM) of particle physics. However, they could be enhanced in a new physics model Beyond the Standard Model (BSM). The top quark FCNC interactions would be a good test of new physics at present and future colliders. Within the framework of the BSM models, these interactions can be described by an effective Lagrangian. In this work, we study tq \(\gamma\) and tqZ effective FCNC interaction vertices through the process \(e^- p \rightarrow e^- W q + X\) at future electron proton colliders, projected as Large Hadron electron Collider (LHeC) and Future Circular Collider-hadron electron (FCC-he). The cross sections for the signal have been calculated for different values of parameters \(\lambda_q\) for tq \(\gamma\) vertices and \(\kappa_q\) for tqZ vertices. Taking into account the relevant background we estimate the attainable range of signal parameters as a function of the integrated luminosity and present contour plots of couplings for different significance levels including detector simulation. We find the sensitivities to the branching ratios \((B R(t \rightarrow q \gamma) = 7.5 \times 10^{- 6}, B R(t \rightarrow q Z) = 3.5 \times 10^{- 5})\) and \((B R(t \rightarrow q \gamma) = 8.5 \times 10^{- 7}, B R(t \rightarrow q Z) = 6.0 \times 10^{- 6})\) for an integrated luminosity of \(2 \text{ab}^{- 1}\) at LHeC and FCC-he, respectively.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81V22 Unified quantum theories
81V35 Nuclear physics
81U35 Inelastic and multichannel quantum scattering

Software:

PYTHIA8; FeynRules
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Cabibbo, N., Phys. Rev. Lett., 10, 531 (1963)
[2] Kobayashi, M.; Maskawa, T., Prog. Theor. Phys., 49, 652 (1973)
[3] Glashow, S. L.; Iliopoulos, J.; Maiani, L., Phys. Rev. D, 2, 1285 (1970)
[4] Tanabashi, M., Phys. Rev. D, 98, Article 030001 pp. (2018)
[5] Eur. Phys. J. C, 76, 55 (2016)
[6] J. High Energy Phys., 04, Article 035 pp. (2016)
[7] Aaboud, M., J. High Energy Phys., 1710, 120 (2017)
[8] Sirunyan, A. M., J. High Energy Phys., 1707, Article 003 pp. (2017)
[11] Dutta, S.; Goyal, A.; Kumar, M.; Mellado, B., Eur. Phys. J. C, 75, 577 (2015)
[12] Aguilar-Saavedra, J. A., Eur. Phys. J. C, 77, 769 (2017)
[13] Abelleria Fernandez, J. L., LHeC Study Group, J. Phys. G, Nucl. Part. Phys., 39, Article 075001 pp. (2012)
[14] More information is available on the FCC web site:
[15] Turk Cakir, I.; Yilmaz, A.; Denizli, H.; Senol, A.; Karadeniz, H.; Cakir, O., Adv. High Energy Phys., 2017, Article 1572053 pp. (2017), pp. 1-8
[16] Denizli, H.; Senol, A.; Yilmaz, A.; Turk Cakir, I.; Karadeniz, H.; Cakir, O., Phys. Rev. D, 96, Article 015024 pp. (2017)
[17] Kumar, M.; Ruan, X.; Islam, R.; Cornell, A. S.; Klein, M.; Klein, U.; Mellado, B., Phys. Lett. B, 764, 247 (2017)
[18] Behera, S.; Islam, R.; Kumar, M.; Poulose, P.; Rahaman, R. (2018)
[19] Aguilar-Saavedra, J. A., Nucl. Phys. B, 812, 181 (2009)
[20] Li, C. S.; Oakes, R. J.; Yuan, T. C., Phys. Rev. D, 43, 3759 (1991)
[21] Alwall, J., J. High Energy Phys., 07, Article 079 pp. (2014)
[22] Alloul, A.; Christensen, N. D.; Degrande, C.; Duhr, C.; Fuks, B., Comput. Phys. Commun., 185, 8, 2250-2300 (2014)
[23] Sjostrand, T.; Mrenna, S.; Skands, P., PYTHIA 6.4 physics and manual, J. High Energy Phys., 5 (2006), article 026 · Zbl 1368.81015
[24] de Favereau, J., J. High Energy Phys., 2014 (2014), article 57
[25] Cacciari, M.; Salam, G. P.; Soyez, G., Eur. Phys. J. C, 72, 1896 (2012)
[26] Cacciari, M.; Salam, G. P.; Soyez, G., J. High Energy Phys., 0804, Article 063 pp. (2008)
[27] Durieux, G.; Maltoni, F.; Zhang, C., Phys. Rev. D, 91, Article 074017 pp. (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.