zbMATH — the first resource for mathematics

A design technique for fast sampled-data nonlinear model predictive control with convergence and stability results. (English) Zbl 1430.93068
Summary: In this study, a sampled-data nonlinear model predictive control scheme is developed. The control algorithm uses a prediction horizon with variable length, a terminal constraint set, and a feedback controller defined on this set. Following a suboptimal solution strategy, a defined number of steps of an iterative optimisation routine improve the current input trajectory at each sampling point. The value of the objective function monotonically decreases and the state converges to a target set. A discrete-time formulation of the algorithm and a discrete-time design model ensure high computational efficiency and avoid an ad hoc quasi-continuous implementation. This design technique for a fast sampled-data nonlinear model predictive control algorithm is the main contribution of the paper. Based on a benchmark control problem, the performance of the developed control algorithm is assessed against state-of-the-art nonlinear model predictive control methods available in the literature. This assessment demonstrates that the developed control algorithm stabilises the system with very low computational effort. Hence, the algorithm is suitable for real-time control of fast dynamical systems.

93B45 Model predictive control
93C10 Nonlinear systems in control theory
93C57 Sampled-data control/observation systems
93B52 Feedback control
93C55 Discrete-time control/observation systems
Full Text: DOI
[1] Adetola, V.; Guay, M., Integration of real-time optimization and model predictive control, Journal of Process Control, 20, 2, 125-133 (2010)
[2] Alamir, M., Stabilization of nonlinear systems using receding-horizon control schemes: A parametrized approach for fast systems (2006), London: Springer, London · Zbl 1122.93061
[3] Alamir, M., Monitoring control updating period in fast gradient based NMPC, Proceedings of the European Control Conference, 3621-3626 (2013)
[4] Alamir, M., Fast NMPC: A reality-steered paradigm: Key properties of fast NMPC algorithms, Proceedings of the European Control Conference, 2472-2477 (2014)
[5] Andersson, J., A general-purpose software framework for dynamic optimization (2013), Arenberg Doctoral School, KU Leuven, Heverlee
[6] Bazaraa, M. S.; Sherali, H. D.; Shetty, C. M., Nonlinear programming: Theory and algorithms (2006), Hoboken, NJ: John Wiley & Sons, Hoboken, NJ · Zbl 1140.90040
[7] Bertsekas, D. P., Nonlinear programming (1999), Belmont, MA: Athena Scientific, Belmont, MA · Zbl 1015.90077
[8] Biegler, L. T.; Yang, X.; Fischer, G. A. G., Advances in sensitivity-based nonlinear model predictive control and dynamic real-time optimization, Journal of Process Control, 30, 104-116 (2015)
[9] Cagienard, R.; Grieder, P.; Kerrigan, E. C.; Morari, M., Move blocking strategies in receding horizon control, Journal of Process Control, 17, 6, 563-570 (2007)
[10] Chen, H.; Allgöwer, F., Nonlinear model predictive control schemes with guaranteed stability, Nonlinear model-based process control, 465-494 (1998), Dordrecht: Springer, Dordrecht
[11] Chen, H.; Allgöwer, F., A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability, Automatica, 34, 10, 1205-1217 (1998) · Zbl 0947.93013
[12] DeHaan, D.; Guay, M., A real-time framework for model-predictive control of continuous-time nonlinear systems, IEEE Transactions on Automatic Control, 52, 11, 2047-2057 (2007) · Zbl 1366.93175
[13] Diehl, M.; Amrit, R.; Rawlings, J. B., A Lyapunov function for economic optimizing model predictive control, IEEE Transactions on Automatic Control, 56, 3, 703-707 (2011) · Zbl 1368.93340
[14] Diehl, M.; Findeisen, R.; Allgöwer, F.; Bock, H. G.; der, J. P., Nominal stability of real-time iteration scheme for nonlinear model predictive control, IEE Proceedings Control Theory and Applications, 152, 3, 296-308 (2005)
[15] Feller, C.; Ebenbauer, C., A barrier function based continuous-time algorithm for linear model predictive control, Proceedings of the European Control Conference, 19-26 (2013)
[16] Feller, C.; Ebenbauer, C., Barrier function based linear model predictive control with polytopic terminal sets, Proceedings of the 53rd IEEE Conference on Decision and Control, 6683-6688 (2014)
[17] Feller, C.; Ebenbauer, C., Continuous-time linear MPC algorithms based on relaxed logarithmic barrier functions, IFAC Proceedings Volumes, 47, 3, 2481-2488 (2014)
[18] Feller, C.; Ebenbauer, C., Weight recentered barrier functions and smooth polytopic terminal set formulations for linear model predictive control, Proceedings of the American Control Conference, 1647-1652 (2015)
[19] Fontes, F. A. C. C., A general framework to design stabilizing nonlinear model predictive controllers, Systems & Control Letters, 42, 2, 127-143 (2001) · Zbl 0985.93023
[20] Fontes, F. A. C. C.; Magni, L.; Gyurkovics, E., Sampled-data model predictive control for nonlinear time-varying systems: Stability and robustness, Assessment and future directions of nonlinear model predictive control, 115-129 (2007), Berlin-Heidelberg: Springer, Berlin-Heidelberg · Zbl 1220.93047
[21] Franklin, G. F.; Powell, J. D.; Workman, M., Digital control of dynamic systems (1997), Upper Saddle River, NJ: Prentice Hall, Upper Saddle River, NJ
[22] Graichen, K.; Käpernick, B., A real-time gradient method for nonlinear model predictive control, Frontiers of model predictive control, 9-28 (2012), Rijeka: InTech
[23] Graichen, K., A fixed-point iteration scheme for real-time model predictive control, Automatica, 48, 7, 1300-1305 (2012) · Zbl 1246.93042
[24] Graichen, K.; Kugi, A., Stability and incremental improvement of suboptimal MPC without terminal constraints, IEEE Transactions on Automatic Control, 55, 11, 2576-2580 (2010) · Zbl 1368.93538
[25] Griva, I.; Nash, S. G.; Sofer, A., Linear and Nonlinear Optimization (2009), Philadelphia, PA: Society for Industrial and Applied Mathematics · Zbl 1159.90002
[26] Gros, S.; Zanon, M.; Quirynen, R.; Bemporad, A.; Diehl, M., From linear to nonlinear MPC: Bridging the gap via the real-time iteration, Accepted for publishing in International Journal of Control, 1-19 (2016)
[27] Grüne, L.; Pannek, J., Analysis of unconstrained NMPC schemes with incomplete optimization, Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems, 238-243 (2010)
[28] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving ordinary differential equations I: Nonstiff problems (1993), Berlin, NY: Springer, Berlin, NY · Zbl 0789.65048
[29] Khalil, H. K., Nonlinear systems (2002), Upper Saddle River: NJ: Prentice Hall, Upper Saddle River: NJ
[30] Kristić, M.; Kanellakopoulos, I.; Kokotović, P., Nonlinear and adaptive control design. Adaptive and learning systems for signal processing, communications, and control (1995), Chichester, NY: John Wiley & Sons, Chichester, NY
[31] Luenberger, D. G.; Ye, Y., Linear and nonlinear programming (2008), New York, NY: Springer, New York, NY · Zbl 1207.90003
[32] Michalska, H.; Mayne, D. Q., Robust receding horizon control of constrained nonlinear systems, IEEE Transactions on Automatic Control, 38, 11, 1623-1633 (1993) · Zbl 0790.93038
[33] Nešić, D.; Grüne, L., A receding horizon control approach to sampled-data implementation of continuous-time controllers, Systems & Control Letters, 55, 8, 660-672 (2006) · Zbl 1100.93042
[34] Nešić, D.; Teel, A. R., A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models, IEEE Transactions on Automatic Control, 49, 7, 1103-1122 (2004) · Zbl 1365.93281
[35] Nešić, D.; Teel, A. R.; Kokotović, P. V., Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations, Systems & Control Letters, 38, 4-5, 259-270 (1999) · Zbl 0985.93034
[36] Nocedal, J.; Wright, S. J., Numerical optimization (2006), New York, NY: Springer, New York, NY · Zbl 1104.65059
[37] Rawlings, J. B.; Mayne, D. Q., Model predictive control: Theory and design (2009), Madison, WI: Nob Hill Publishing, Madison, WI
[38] Sastry, S., Nonlinear systems: Analysis, stability, and crontrol (1999), New York, NY: Springer, New York, NY
[39] Scokaert, P. O.; Mayne, D. Q.; Rawlings, J. B., Suboptimal model predictive control (feasibility implies stability), IEEE Transactions on Automatic Control, 44, 3, 648-654 (1999) · Zbl 1056.93619
[40] Stoer, J.; Bulirsch, R., Introduction to numerical analysis (2002), New York, NY: Springer, New York, NY · Zbl 1004.65001
[41] Streif, S.; Kögel, M.; Bäthge, T.; Findeisen, R., Robust nonlinear model predictive control with constraint satisfaction: A relaxation-based approach, IFAC Proceedings Volumes, 47, 3, 11073-11079 (2014)
[42] Van Loan, C. F., Computing integrals involving the matrix exponential, IEEE Transactions on Automatic Control, 23, 3, 395-404 (1978) · Zbl 0387.65013
[43] Wächter, A.; Biegler, L. T., On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106, 1, 25-57 (2006) · Zbl 1134.90542
[44] Wills, A. G.; Heath, W. P., Barrier function based model predictive control, Automatica, 40, 8, 1415-1422 (2004) · Zbl 1077.93024
[45] Worthmann, K.; Mehrez, M. W.; Zanon, M.; Mann, G. K.; Gosine, R. G.; Diehl, M., Model predictive control of nonholonomic mobile robots without stabilizing constraints and costs, IEEE Transactions on Control Systems Technology, 24, 4, 1394-1406 (2016)
[46] Worthmann, K.; Reble, M.; Grüne, L.; Allgöwer, F., The role of sampling for stability and performance in unconstrained nonlinear model predictive control, SIAM Journal on Control and Optimization, 52, 1, 581-605 (2014) · Zbl 1292.93061
[47] Yang, X.; Biegler, L. T., Advanced-multi-step nonlinear model predictive control, Journal of Process Control, 23, 8, 1116-1128 (2013)
[48] Yu, M.; Biegler, L. T., A stable and robust NMPC strategy with reduced models and nonuniform grids, IFAC Proceedings Volumes, 49, 7, 31-36 (2016)
[49] Yu, S.; Chen, H.; Böhm, C.; Allgöwer, F., Enlarging the terminal region of NMPC with parameter-dependent terminal control law, Nonlinear model predictive control: Towards new challenging applications, 69-78 (2009), Berlin-Heidelberg: Springer, Berlin-Heidelberg · Zbl 1195.93045
[50] Zanelli, A.; Quirynen, R.; Diehl, M., An efficient inexact NMPC scheme with stability and feasibility guarantees, IFAC-PapersOnLine, 49, 18, 53-58 (2016)
[51] Zavala, V. M.; Laird, C. D.; Biegler, L. T., Fast implementations and rigorous models: Can both be accommodated in NMPC?, International Journal of Robust and Nonlinear Control, 18, 8, 800-815 (2008) · Zbl 1284.93105
[52] Zeilinger, M. N.; Jones, C. N.; Morari, M., Real-time suboptimal model predictive control using a combination of explicit MPC and online optimization, IEEE Transactions on Automatic Control, 56, 7, 1524-1534 (2011) · Zbl 1368.93417
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.