zbMATH — the first resource for mathematics

On the local Bump-Friedberg \(L\)-function. II. (English) Zbl 1431.11066
Summary: Let \(F\) be a \(p\)-adic field with residue field of cardinality \(q\). To each irreducible representation of \(\mathrm{GL}(n, F)\), we attach a local Euler factor \(L^{BF}(q^{-s},q^{-t},\pi)\) via the Rankin-Selberg method, and show that it is equal to the expected factor \(L(s+t+1/2,\phi_\pi)L(2s,\Lambda ^2\circ \phi _\pi)\) of the Langlands’ parameter \(\phi _\pi \) of \(\pi \). The corresponding local integrals were introduced in [D. Bump and S. Friedberg, Isr. Math. Conf. Proc. 3, 47–65 (1990; Zbl 0712.11030)], and studied in Part I [the author, J. Reine Angew. Math. 709, 119–170 (2015; Zbl 1398.11080)]. This work is in fact the continuation of [the author, loc. cit.].
The result is a consequence of the fact that if \(\delta \) is a discrete series representation of \(\mathrm{GL}(2m, F)\), and \(\chi\) is a character of Levi subgroup \(L=\mathrm{GL}(m,F)\times \mathrm{GL}(m,F)\) which is trivial on \(\mathrm{GL}(m, F)\) embedded diagonally, then \(\delta\) is \((L,\chi)\)-distinguished if an only if it admits a Shalika model. This result was only established for \(\chi =\mathbf{1}\) before.

11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
11F70 Representation-theoretic methods; automorphic representations over local and global fields
22E50 Representations of Lie and linear algebraic groups over local fields
Full Text: DOI arXiv
[1] Bernstein, JN; Zelevinsky, AV, Induced representations of reductive p-adic groups, Ann. Sc. E.N.S, 10, 441-472, (1977) · Zbl 0412.22015
[2] Bump, D., Friedberg, S.: The exterior square automorphic \(L\)-functions on \({\rm GL}(n)\). Israel Math. Conference Proceedings, 3 Weizmann Jerusalem 47-65 (1990) · Zbl 1242.22024
[3] Bushnell, C.J., Henniart, G.: The local Langlands conjecture for \({{\rm GL}}(2)\) (Grundlehren der Mathematischen Wissenschaften, 335). Springer-Verlag, Berlin (2006) · Zbl 1100.11041
[4] Delorme, P, Constant term of smooth \(H_ψ \)-spherical functions on a reductive \(p\)-adic group, Trans. Amer. Math. Soc., 362, 933-955, (2010) · Zbl 1193.22014
[5] Friedberg, S; Jacquet, H, Linear periods, J. Reine Angew. Math., 443, 91-139, (1993) · Zbl 0782.11033
[6] Godement, R., Jacquet, H.: Zeta functions of simple algebras (Lecture Notes in Mathematics, vol. 260). Springer-Verlag, Berlin-New York (1972) · Zbl 0244.12011
[7] Harris, M., Taylor, R.: with an appendix by V.G. Berkovich, The geometry and cohomology of some simple Shimura varieties (Annals of Mathematics Studies 151). Princeton University Press, Princeton (2001) · Zbl 1036.11027
[8] Henniart, G, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent. Math., 139, 439-455, (2000) · Zbl 1048.11092
[9] Jacquet, H.: Principal \(L\)-functions of the linear group (Automorphic forms, representations and \(L\)-functions, Part 2, pp. 63-86, Proceedings Symposium Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I) (1979) · Zbl 0855.22018
[10] Jacquet, H; Rallis, S, Uniqueness of linear periods, Compos. Math., 102, 65-123, (1996) · Zbl 0855.22018
[11] Jacquet, H; Piatetskii-Shapiro, II; Shalika, JA, Rankin-Selberg convolutions, Amer. J. Math., 105, 367-464, (1983) · Zbl 0525.22018
[12] Jacquet, H; Shalika, JA, The Whittaker models of induced representations, Pacific J. Math., 109, 107-120, (1983) · Zbl 0535.22017
[13] Kato, S,I., Takano, K.: Subrepresentation theorem for \(p\)-adic symmetric spaces. Int. Math. Res. Not. 11, rnn028 (2008) · Zbl 1197.22007
[14] Matringe, N, Derivatives and asymptotics of Whittaker functions, Represent. Theory, 15, 646-669, (2011) · Zbl 1242.22024
[15] Matringe, N, Linear and Shalika local periods for the mirabolic group, and some consequences, J. Number Theory, 138, 1-19, (2014) · Zbl 1294.22014
[16] Matringe N.: On the local Bump-Friedberg \(L\)-function. J. Reine Angew. Math. doi:10.1515/crelle-2013-0083 · Zbl 1398.11080
[17] Rodier F.: Whittaker models for admissible representations of reductive p-adic split groups. (Harmonic analysis on homogeneous spaces, 425-430. Amer. Math. Soc.) Providence, R.I (1973)
[18] Silberger, AJ, The Langlands quotient theorem for p-adic groups, Math. Ann., 236, 95-104, (1978) · Zbl 0362.20029
[19] Zelevinsky, AV, Induced representations of reductive p-adic groups II, Ann. Sc. E.N.S., 13, 165-210, (1977) · Zbl 0441.22014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.