×

zbMATH — the first resource for mathematics

Korovkin-type approximation theorem for Bernstein Stancu operator of rough statistical convergence of triple sequence. (English) Zbl 1431.40013
Summary: We obtain a Korovkin-type approximation theorem for Bernstein Stancu polynomials of rough statistical convergence of triple sequences of positive linear operators of three variables from \(H_\omega (K)\) to \(C_B(K)\), where \(K= [0, \infty)\times [0,\infty)\times[0,\infty)\) and \(\omega\) is non-negative increasing function on \(K\).
MSC:
40F05 Absolute and strong summability (should also be assigned at least one other classification number in Section 40-XX)
40J05 Summability in abstract structures (should also be assigned at least one other classification number from Section 40-XX)
40G05 Cesàro, Euler, Nörlund and Hausdorff methods
40G15 Summability methods using statistical convergence
PDF BibTeX XML Cite
Full Text: Link
References:
[1] T. Acar and F. Dirik,Korovkin-type theorems in weightedLp-spaces via summation process, The Scientifc World J. 2013, Article ID 534054, 6 pages (2013).
[2] F. Altomare and M. Campiti,Korovkin type approximation theory and its applications, Walter de Gruyter Publ., Berlin (1994). · Zbl 0924.41001
[3] S. Aytar,Rough statistical convergence, Numer. Funct. Anal. Optimiz., 29(3-4), 291-303 (2008). · Zbl 1159.40002
[4] S. Aytar,The rough limit set and the core of a real sequence, Numer. Funct. Anal. Optimiz., 29(3-4), 283-290 (2008). · Zbl 1159.40001
[5] N. L. Braha, H. M. Srivastava and S. A. Mohiuddine,A Korovkin’s type approximation theorem for periodic functions via the statistical summability of the generalized de la Vall´ee Poussin mean, Appl. Math. Comput., 228, 162-169 (2014). · Zbl 1364.41012
[6] S. Debnath, B. Sarma and B.C. Das,Some generalized triple sequence spaces of real numbers, J. Nonlinear Anal. Optimiz., 6(1), 71-79 (2015). · Zbl 1412.46009
[7] O. Duman,A Korovkin type approximation throrems viaI-convergence, Czechoslovak Math. J., 75(132), 367-375 (2007). · Zbl 1174.41004
[8] O. Duman, M. K. Khan and C. Orhan,A-statistical convergence of approximating operators, Math. Inequa. Appl., 6(4), 689-699 (2003). · Zbl 1086.41008
[9] E. Dundar and C. Cakan,Rough convergence of double sequences, Gulf J. Math., 2(1), 45-51 (2014). · Zbl 1389.40003
[10] A. J. Dutta, A. Esi and B.C. Tripathy,Statistically convergent triple sequence spaces defined by Orlicz function, J. Math. Anal., 4(2), 16-22 (2013). · Zbl 1312.40009
[11] O. H. H. Edely, S. A. Mohiuddine and A. Noman,Korovkin type approximation theorems obtained through generalized statistical convergence, Appl. Math. Letters, 23(11), 1382-1387 (2010). · Zbl 1206.40003
[12] A. Esi,On some triple almost lacunary sequence spaces defined by Orlicz functions, Research and Reviews: Discrete Math. Structures, 1(2), 16-25 (2014).
[13] A. Esi and M. Necdet Catalbas,Almost convergence of triple sequences, Global J. Math. Anal., 2(1), 6-10 (2014). · Zbl 1413.40010
[14] A. Esi and E. Savas,On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. Inf. Sci., 9(5), 2529-2534 (2015).
[15] A. Esi and N.Subramanian,On triple sequence spaces of Bernstein operator ofχ3of roughλstatistical convergence in probability of random variables defined by Musielak-Orlicz function, Int. J. Open Probl. Comput. Sci. Math., 11(2), 62-70 (2018). · Zbl 1388.46007
[16] A. Esi and N. Subramanian,Some triple difference rough Cesaro and lacunary statistical sequence spaces, J. Math. Appl., 41, 1-13 (2018). · Zbl 1429.46003
[17] A. Esi, S. Araci and M. Acikgoz,Statistical Convergence of Bernstein Operators, Appl. Math. Inf. Sci., 10(6), 2083-2086 (2016).
[18] A. Esi,λ3-Statistical convergence of triple sequences on probabilistic normed space, Global J. Math. Anal., 1(2), 29-36 (2013). · Zbl 1299.40018
[19] H. Fast,Sur la convergence statistique, Colloq. Math., 2, 241-244 (1951). · Zbl 0044.33605
[20] J. A. Fridy,On statistical convergence, Analysis, 5, 301-313 (1985). · Zbl 0588.40001
[21] A. D. Gadjiev,The convergence problem for a sequence of positive linear operators an unbounded sets, and theorems analogous to that of P.P. Korovkin, Soviet Math. Dokl., 15, 1433-1436 (1974). · Zbl 0312.41013
[22] A. D. Gadjiev and C. Orhan,Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32(1), 129-138 (2002). · Zbl 1039.41018
[23] B. Hazarika, N. Subramanian and A. Esi,On rough weighted ideal convergence of triple sequence of Bernstein polynomials, Proccedings of the Jangjeon Mathematical Society, 21(3), 497-506 (2018). · Zbl 1421.40003
[24] P. P. Korovkin,Linear operators and the theory of approximation, India, Delhi (1960).
[25] P. Malik and M. Maity,On rough statistical convergence of double sequences in normed linear spaces, Afr. Mat., 27(1), 141-148 (2016). · Zbl 1359.40004
[26] S. A. Mohiuddine,An application of almost convergence in approximation theorems, Appl. Math. Letters, 24(11), 1856-1860 (2011). · Zbl 1252.41022
[27] S. A. Mohiuddine and A. Alotaibi,Statistical convergence and approximation theorems for functions of two variables, J. Comput. Anal. Appl., 15(2), 218-223 (2013). · Zbl 1275.41011
[28] S. A. Mohiuddine and A. Alotaibi,Korovkin second theorem via statistical summability(C,1), J. Inequa. Appl., 2013, Article 149, 9 pages (2013). · Zbl 1281.41009
[29] M. Mursaleen and A. Kilicman,Korovkin Second Theorem viaB-StatisticalA-Summability, Abstr. Appl. Anal., (2013). 10.1155/2013/598963. · Zbl 06161356
[30] M. Mursaleen, F. Khan, A. Khan and A. Kilicman,Some approximation results for generalized Kantorovich-type operators. J. Inequal. Appl., 2013:585, 1-14 (2013). 10.1186/1029242X-2013-585. · Zbl 1295.41023
[31] H. X. Phu,Rough convergence in normed linear spaces, Numer. Funct. Anal. Optimiz., 22, 199-222 (2001). · Zbl 0986.46012
[32] H. X. Phu,Rough continuity of linear operators, Numer. Funct. Anal. Optimiz., 23, 139-146 (2002).
[33] H. X. Phu,Rough convergence in infinite dimensional normed spaces, Numer. Funct. Anal. Optimiz., 24, 285-301 (2003). · Zbl 1029.46005
[34] A. Sahiner, M. Gurdal and F. K. Duden,Triple sequences and their statistical convergence, Selcuk J. Appl. Math., 8(2), 49-55 (2007). · Zbl 1152.40306
[35] A. Sahiner and B. C. Tripathy,SomeIrelated properties of triple sequences, Selcuk J. Appl. Math., 9(2), 9-18 (2008). · Zbl 1167.40300
[36] T. ˘Sal´at,On statistical convergence of real numbers, Math. Slovaca, 30, 139-150 (1980).
[37] E. Savas and A. Esi,Statistical convergence of triple sequences on probabilistic normed space, Ann. Uni. Craiova, Math. Compu. Sci. Series, 39(2), 226-236 (2012). · Zbl 1274.40035
[38] I. J. Schoenberg,The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66, 361-375 (1959). · Zbl 0089.04002
[39] N. Subramanian and A. Esi,On triple sequence space of Bernstein operator ofχ3of rough λ-statistical convergence in probability defined by Musielak-Orlicz function ofp-metric, Electron. J. Math. Anal. Appl., 6(1), 198-203 (2018). · Zbl 1388.46007
[40] B. C. Tripathy and R. Goswami,On triple difference sequences of real numbers in probabilistic normed spaces, Proyecciones J. Math., 33(2), 157-174 (2014). · Zbl 1319.40005
[41] Ayten Esi, M.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.