zbMATH — the first resource for mathematics

The optimal constants of the mixed \((\ell_{1},\ell_{2})\)-Littlewood inequality. (English) Zbl 1431.46024
Summary: In this note, among other results, we find the optimal constants of the generalized Bohnenblust-Hille inequality for \(m\)-linear forms over \(\mathbb{R}\) and with multiple exponents \((1, 2, \dots, 2)\), sometimes called mixed \((\ell_1, \ell_2)\)-Littlewood inequality. We show that these optimal constants are precisely \((\sqrt{2})^{m-1}\) and this is somewhat surprising since a series of recent papers have shown that similar constants have a sublinear growth. This result answers a question raised by N. Albuquerque et al. in [J. Funct. Anal. 266, No. 6, 3726–3740 (2014; Zbl 1319.46035)].

46G25 (Spaces of) multilinear mappings, polynomials
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
26D15 Inequalities for sums, series and integrals
Full Text: DOI
[1] Albuquerque, N.; Bayart, F.; Pellegrino, D.; Seoane-Sepúlveda, J. B., Sharp generalizations of the multilinear Bohnenblust-Hille inequality, J. Funct. Anal., 266, 3726-3740, (2014) · Zbl 1319.46035
[2] Albuquerque, N.; Bayart, F.; Pellegrino, D.; Seoane-Sepúlveda, J. B., Optimal Hardy-Littlewood type inequalities for polynomials and multilinear operators, Israel J. Math., (13 Nov 2013), in press
[3] Araújo, G.; Pellegrino, D.; Silva, D. D.P., On the upper bounds for the constants of the Hardy-Littlewood inequality, J. Funct. Anal., 267, 1878-1888, (2014) · Zbl 1298.26066
[4] Bayart, F.; Pellegrino, D.; Seoane-Sepúlveda, J. B., The Bohr radius of the n-dimensional polydisc is equivalent to \(\sqrt{(\log n) / n}\), Adv. Math., 264, 726-746, (2014) · Zbl 1331.46037
[5] Bohnenblust, H. F.; Hille, E., On the absolute convergence of Dirichlet series, Ann. of Math., 32, 600-622, (1931) · JFM 57.0266.05
[6] Defant, A.; Frerick, L.; Ortega-Cerda, J.; Ounaies, M.; Seip, K., The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive, Ann. of Math. (2), 174, 1, 485-497, (2011) · Zbl 1235.32001
[7] Defant, A.; Sevilla-Peris, P., A new multilinear insight on Littlewood’s 4/3-inequality, J. Funct. Anal., 256, 5, 1642-1664, (2009) · Zbl 1171.46034
[8] Diestel, J.; Jarchow, H.; Tonge, A., Absolutely summing operators, (1995), Cambridge University Press Cambridge · Zbl 0855.47016
[9] Diniz, D.; Muñoz-Fernádez, G. A.; Pellegrino, D.; Seoane-Sepúlveda, J. B., Lower bounds for the constants in the Bohnenblust-Hille inequality: the case of real scalars, Proc. Amer. Math. Soc., 142, 2, 575-580, (2014) · Zbl 1291.46040
[10] Garling, D. J.H., Inequalities: A journey into linear analysis, (2007), Cambridge University Press Cambridge, x+335 pp · Zbl 1135.26014
[11] Haagerup, U., The best constants in the khinchine inequality, Studia Math., 70, 231-283, (1982) · Zbl 0501.46015
[12] Hardy, G.; Littlewood, J. E., Bilinear forms bounded in space \([p, q]\), Quart. J. Math., 5, 241-254, (1934) · Zbl 0010.36101
[13] Littlewood, J. E., On bounded bilinear forms in an infinite number of variables, Quart. J. (Oxford Ser.), 1, 164-174, (1930) · JFM 56.0335.01
[14] Montanaro, A., Some applications of hypercontractive inequalities in quantum information theory, J. Math. Phys., 53, 12, (2012) · Zbl 1278.81045
[15] Nuñez-Alarcón, D.; Pellegrino, D.; Seoane-Sepúlveda, J. B.; Serrano-Rodríguez, D. M., There exist multilinear Bohnenblust-Hille constants \((C_n)_{n = 1}^\infty\) with \(\lim_{n \rightarrow \infty}(C_{n + 1} - C_n) = 0\), J. Funct. Anal., 264, 429-463, (2013) · Zbl 1264.46033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.