×

Joint maximum likelihood estimation for high-dimensional exploratory item factor analysis. (English) Zbl 1431.62524

Summary: Joint maximum likelihood (JML) estimation is one of the earliest approaches to fitting item response theory (IRT) models. This procedure treats both the item and person parameters as unknown but fixed model parameters and estimates them simultaneously by solving an optimization problem. However, the JML estimator is known to be asymptotically inconsistent for many IRT models, when the sample size goes to infinity and the number of items keeps fixed. Consequently, in the psychometrics literature, this estimator is less preferred to the marginal maximum likelihood (MML) estimator. In this paper, we re-investigate the JML estimator for high-dimensional exploratory item factor analysis, from both statistical and computational perspectives. In particular, we establish a notion of statistical consistency for a constrained JML estimator, under an asymptotic setting that both the numbers of items and people grow to infinity and that many responses may be missing. A parallel computing algorithm is proposed for this estimator that can scale to very large datasets. Via simulation studies, we show that when the dimensionality is high, the proposed estimator yields similar or even better results than those from the MML estimator, but can be obtained computationally much more efficiently. An illustrative real data example is provided based on the revised version of Eysenck’s Personality Questionnaire (EPQ-R).

MSC:

62P15 Applications of statistics to psychology
62D05 Sampling theory, sample surveys

Software:

mirt
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Andersen, E. B. (1973). Conditional inference and models for measuring. Copenhagen, Denmark: Mentalhygiejnisk Forlag.
[2] Baker, F. B. (1987). Methodology review: Item parameter estimation under the one-, two-, and three-parameter logistic models. Applied Psychological Measurement, 11(2), 111-141. · doi:10.1177/014662168701100201
[3] Bartholomew, D. J., Moustaki, I., Galbraith, J., & Steele, F. (2008). Analysis of multivariate social science data. Boca Raton, FL: CRC Press. · Zbl 1162.62096
[4] Béguin, A. A., & Glas, C. A. (2001). MCMC estimation and some model-fit analysis of multidimensional IRT models. Psychometrika, 66(4), 541-561. · Zbl 1293.62234 · doi:10.1007/BF02296195
[5] Birnbaum, A.; Lord, FM (ed.); Novick, MR (ed.), Some latent trait models and their use in inferring an examinee’s ability (1968), Reading, MA
[6] Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46(4), 443-459. · doi:10.1007/BF02293801
[7] Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-information item factor analysis. Applied Psychological Measurement, 12(3), 261-280. · doi:10.1177/014662168801200305
[8] Bolt, D. M., & Lall, V. F. (2003). Estimation of compensatory and noncompensatory multidimensional item response models using Markov chain Monte Carlo. Applied Psychological Measurement, 27(6), 395-414. · doi:10.1177/0146621603258350
[9] Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36(1), 111-150. · doi:10.1207/S15327906MBR3601_05
[10] Cai, L. (2010a). High-dimensional exploratory item factor analysis by a Metropolis-Hastings Robbins-Monro algorithm. Psychometrika, 75(1), 33-57. · Zbl 1272.62113 · doi:10.1007/s11336-009-9136-x
[11] Cai, L. (2010b). Metropolis-Hastings Robbins-Monro algorithm for confirmatory item factor analysis. Journal of Educational and Behavioral Statistics, 35(3), 307-335. · doi:10.3102/1076998609353115
[12] Cai, T., & Zhou, W.-X. (2013). A max-norm constrained minimization approach to 1-bit matrix completion. The Journal of Machine Learning Research, 14(1), 3619-3647. · Zbl 1318.62172
[13] Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48(6), 1-29. · doi:10.18637/jss.v048.i06
[14] Chiu, C.-Y., Köhn, H.-F., Zheng, Y., & Henson, R. (2016). Joint maximum likelihood estimation for diagnostic classification models. Psychometrika, 81(4), 1069-1092. · Zbl 1367.62313 · doi:10.1007/s11336-016-9534-9
[15] Dagum, L., & Menon, R. (1998). OpenMP: An industry standard API for shared-memory programming. Computational Science & Engineering, IEEE, 5(1), 46-55. · doi:10.1109/99.660313
[16] Davenport, M. A., Plan, Y., van den Berg, E., & Wootters, M. (2014). 1-bit matrix completion. Information and Inference, 3(3), 189-223. · Zbl 1309.62124 · doi:10.1093/imaiai/iau006
[17] Edelen, M. O., & Reeve, B. B. (2007). Applying item response theory (IRT) modeling to questionnaire development, evaluation, and refinement. Quality of Life Research, 16(1), 5-18. · doi:10.1007/s11136-007-9198-0
[18] Edwards, M. C. (2010). A Markov chain Monte Carlo approach to confirmatory item factor analysis. Psychometrika, 75(3), 474-497. · Zbl 1208.62188 · doi:10.1007/s11336-010-9161-9
[19] Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
[20] Eysenck, S. B., Eysenck, H. J., & Barrett, P. (1985). A revised version of the psychoticism scale. Personality and Individual Differences, 6(1), 21-29. · doi:10.1016/0191-8869(85)90026-1
[21] Ghosh, M. (1995). Inconsistent maximum likelihood estimators for the Rasch model. Statistics & Probability Letters, 23(2), 165-170. · Zbl 0819.62023 · doi:10.1016/0167-7152(94)00109-L
[22] Haberman, S. J. (1977). Maximum likelihood estimates in exponential response models. The Annals of Statistics, 5(5), 815-841. · Zbl 0368.62019 · doi:10.1214/aos/1176343941
[23] Haberman, S. J. (2004). Joint and conditional maximum likelihood estimation for the Rasch model for binary responses. ETS Research Report Series RR-04-20.
[24] Jöreskog, K. G., & Moustaki, I. (2001). Factor analysis of ordinal variables: A comparison of three approaches. Multivariate Behavioral Research, 36(3), 347-387. · doi:10.1207/S15327906347-387
[25] Lee, K.; Ashton, MC; Robins, RW (ed.); Fraley, RC (ed.); Krueger, RF (ed.), Factor analysis in personality research (2009), New York, NY
[26] Lee, S.-Y., Poon, W.-Y., & Bentler, P. M. (1990). A three-stage estimation procedure for structural equation models with polytomous variables. Psychometrika, 55(1), 45-51. · doi:10.1007/BF02294742
[27] Lord, F. M. (1980). Applications of item response theory to practical testing problems. Mahwah, NJ: Routledge.
[28] Meng, X.-L., & Schilling, S. (1996). Fitting full-information item factor models and an empirical investigation of bridge sampling. Journal of the American Statistical Association, 91(435), 1254-1267. · Zbl 0925.62220 · doi:10.1080/01621459.1996.10476995
[29] Mislevy, R. J. & Stocking, M. L. (1987). A consumer’s guide to LOGIST and BILOG. ETS Research Report Series RR-87-43.
[30] Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16(1), 1-32. · Zbl 0034.07602 · doi:10.2307/1914288
[31] Parikh, N., & Boyd, S. (2014). Proximal algorithms. Foundations and Trends. Optimization, 1(3), 127-239.
[32] Reckase, M. (2009). Multidimensional item response theory. New York, NY: Springer. · Zbl 1291.62023 · doi:10.1007/978-0-387-89976-3
[33] Reckase, M. D. (1972). Development and application of a multivariate logistic latent trait model. Ph.D. thesis, Syracuse University, Syracuse NY.
[34] Reise, S. P., & Waller, N. G. (2009). Item response theory and clinical measurement. Annual Review of Clinical Psychology, 5, 27-48. · doi:10.1146/annurev.clinpsy.032408.153553
[35] Schilling, S., & Bock, R. D. (2005). High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature. Psychometrika, 70(3), 533-555. · Zbl 1306.62497
[36] Sun, J., Chen, Y., Liu, J., Ying, Z., & Xin, T. (2016). Latent variable selection for multidimensional item response theory models via \[L_1\] L1 regularization. Psychometrika, 81(4), 921-939. · Zbl 1367.62322 · doi:10.1007/s11336-016-9529-6
[37] von Davier, A. (2010). Statistical models for test equating, scaling, and linking. New York, NY: Springer.
[38] Wirth, R., & Edwards, M. C. (2007). Item factor analysis: Current approaches and future directions. Psychological Methods, 12(1), 58-79. · doi:10.1037/1082-989X.12.1.58
[39] Yao, L., & Schwarz, R. D. (2006). A multidimensional partial credit model with associated item and test statistics: An application to mixed-format tests. Applied Psychological Measurement, 30(6), 469-492. · doi:10.1177/0146621605284537
[40] Yates, A. (1988). Multivariate exploratory data analysis: A perspective on exploratory factor analysis. Albany, NY: State University of New York Press.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.