×

A matrix free fractional step method for static and dynamic incompressible solid mechanics. (English) Zbl 1431.74105

Summary: A matrix free fractional step method for solid mechanics problems is presented. The proposed method permits solution of incompressible solid mechanics equations and if necessary compressibility can be introduced. The local time stepping employed makes the proposed approach more robust than standard explicit methods. The transient solution is established via a dual time stepping approach. In the dual time stepping method, the inner time step (pseudo time step) is restricted by the explicit time step limit but the real time step has no limits on its value. Some linear static and dynamic problems are solved to demonstrate the proposed matrix free method.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74S99 Numerical and other methods in solid mechanics

Software:

FEAPpv
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1007/BF02738552
[2] DOI: 10.1002/(SICI)1097-0363(19980815)28:2<243::AID-FLD711>3.0.CO;2-U · Zbl 0916.73054
[3] DOI: 10.1017/S0022112002003452 · Zbl 1037.76059
[4] DOI: 10.1023/B:ENGI.0000007985.17625.43 · Zbl 1057.74047
[5] DOI: 10.1016/j.jbiomech.2004.10.038
[6] Zienkiewicz O. C., The Finite Element Method for Fluid Dynamics,, 6. ed. (2005)
[7] DOI: 10.1002/fld.1650200812 · Zbl 0837.76043
[8] DOI: 10.1088/0034-4885/61/6/001
[9] DOI: 10.1002/(SICI)1097-0363(19990915)31:1<359::AID-FLD984>3.0.CO;2-7 · Zbl 0985.76069
[10] DOI: 10.1002/nme.447 · Zbl 1098.76581
[11] DOI: 10.1002/nme.712 · Zbl 1072.76040
[12] DOI: 10.1002/fld.682 · Zbl 1067.76572
[13] Löhner R., Applied CFD Techniques (2001)
[14] DOI: 10.1002/fld.1650041105 · Zbl 0551.76002
[15] DOI: 10.1016/0021-9991(67)90037-X · Zbl 0149.44802
[16] DOI: 10.1016/j.cma.2005.11.004 · Zbl 1123.76054
[17] DOI: 10.1002/(SICI)1097-0207(19981015)43:3<565::AID-NME454>3.0.CO;2-9 · Zbl 0939.74073
[18] DOI: 10.1002/(SICI)1099-0887(199805)14:5<437::AID-CNM162>3.0.CO;2-W · Zbl 0906.73060
[19] DOI: 10.1002/1097-0207(20010110)50:1<119::AID-NME24>3.0.CO;2-C · Zbl 1082.74547
[20] DOI: 10.1002/fld.1650020204 · Zbl 0483.76008
[21] DOI: 10.1016/0045-7825(82)90034-2 · Zbl 0493.76031
[22] DOI: 10.1093/acprof:oso/9780198525295.001.0001 · Zbl 1057.65087
[23] Zienkiewicz, O. C., Taylor, R. L. and Zhu, J. Z. 2005.The Finite Element Method. Its Basis & Fundamentals,, 6th Edition, New York: Elsevier. · Zbl 1307.74005
[24] DOI: 10.1090/S0025-5718-1968-0242392-2
[25] DOI: 10.1006/jcph.2001.6725 · Zbl 1002.76063
[26] DOI: 10.1002/nme.1264 · Zbl 1086.74547
[27] Shuen J. S., Journal of Computational Physics 106 pp 306– (1993) · Zbl 0771.76051
[28] DOI: 10.1002/nme.434 · Zbl 1008.76040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.