×

zbMATH — the first resource for mathematics

Efficient shape optimization for certain and uncertain aerodynamic design. (English) Zbl 1431.76015
Summary: We present novel developments in aerodynamic shape optimization based on shape calculus as well as the proper treatment of aleatoric uncertainties in the field of aerodynamic design.

MSC:
76-06 Proceedings, conferences, collections, etc. pertaining to fluid mechanics
76G25 General aerodynamics and subsonic flows
90C90 Applications of mathematical programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Schulz, V.; Gherman, I., One-shot methods for aerodynamic shape optimization, (), 207-220
[2] Haack, W., Geschoßformen kleinsten wellenwiderstandes, Bericht der lilienthal-gesellschaft, 136, 1, 14-28, (1941)
[3] Pironneau, O., On optimum profiles in Stokes flow, J fluid mech, 59, 1, 117-128, (1973) · Zbl 0274.76022
[4] Hicks, R.M.; Henne, P.A., Wing design by numerical optimization, J aircraft, 15, 407-412, (1978)
[5] Sokolowski, J.; Zolésio, J.-P., Introduction to shape optimization: shape sensitivity analysis, (1992), Springer · Zbl 0761.73003
[6] Delfour, M.C.; Zolésio, J.-P., Shapes and geometries: analysis, differential calculus, and optimization, Adv des control, (2001), SIAM Philadelphia · Zbl 1002.49029
[7] Rusinkiewicz S. Estimating curvatures and their derivatives on triangle meshes. In: Symposium on 3D data processing, visualization, and transmission; 2004.
[8] Schmidt S, Schulz V. Shape derivatives for general objective functions and the incompressible Navier-Stokes equations, Tech. Rep. Preprint SPP1253-10-05, DFG-SPP 1253. Control Cybern, in press.
[9] Schmidt S, Schulz V. Impulse response approximations of discrete shape Hessians with application in CFD. SIAM J Control Optimiz 2009; 48(4): 2562-80. URL <http://link.aip.org/link/?SJC/48/2562/1>. · Zbl 1387.49064
[10] Schmidt S. Efficient large scale aerodynamic design based on shape calculus, Ph.D. thesis, University of Trier, Germany; 2010. URL <http://ubt.opus.hbz-nrw.de/volltexte/2010/569>.
[11] Schmidt S, Ilic C, Gauger N, Schulz V. Shape gradients and their smoothness for practical aerodynamic design optimization, Tech. Rep. Preprint-Nr.: SPP1253-10-03, DFG-SPP 1253, (submitted to OPTE); 2008.
[12] Giles MB, Pierce NA. Adjoint equations in CFD: duality, boundary conditions and solution behaviour, AIAA 97-1850.
[13] Gauger N. Das Adjungiertenverfahren in der aerodynamischen Formoptimierung, Ph.D. thesis, TU Braunschweig; 2003.
[14] Schulz, V.; Schillings, C., On the nature and treatment of uncertainties in aerodynamic design, Aiaa j., 47, 3, 646-654, (2009)
[15] Gumbert, C.; Newman, P.; Hou, G.-W., High-fidelity computational optimization for 3-d flexible wings: part II - effect of random geometric uncertainty on design, Optimiz eng, 6, 1, 139-156, (2005) · Zbl 1145.76417
[16] Loeven G, Bijl H. Airfoil analysis with uncertain geometry using the probabilistic collocation method. In: 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, AIAA 2008-2070; 2008. · Zbl 1232.76038
[17] Karhunen, K., Zur spektraltheorie stochastischer prozesse, suomalaisen Tiedeakatemian toimituksia: ser. A: 1, Math phys, 34, (1946)
[18] Loeve, M., Probability theory, vol. I and II, (1978), Springer New York · Zbl 0385.60001
[19] Borzì A, von Winckel G. Multigrid methods and sparse-grid collocation techniques for parabolic optimal control problems with random coefficients. SIAM J Sci Comput 2009; 31(3): 2172-92. URL <http://link.aip.org/link/?SCE/31/2172/1>. · Zbl 1196.35029
[20] Ghanem, R.; Spanos, P., Stochastic finite elements: a spectral approach, (1991), Springer-Verlag New York · Zbl 0722.73080
[21] Mercer J. Functions of positive and negative type and their connection with the theory of integral equations, Philos Trans Roy Soc Ldn. URL <http://en.wikipedia.org/wiki/Mercer’s_theorem>.
[22] Schwab, C.; Todor, R., Sparse finite elements for stochastic elliptic problems higher order moments, Computing, 71, 43-63, (2003) · Zbl 1044.65006
[23] Khoromskij, B.N.; Litvinenko, A.; Matthies, H.G., Application of hierarchical matrices for computing the karhunen – loève expansion, Computing, 84, 1-2, 49-67, (2009) · Zbl 1162.65306
[24] Wiener N. The homogeneous chaos. Am J Math 1938; 60(4): 897-936. URL <http://www.jstor.org/stable/2371268>. · Zbl 0019.35406
[25] Cameron RH, Martin WT. The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals. Ann Math 1947; 48(2): 385-92. URL <http://www.jstor.org/stable/1969178>.
[26] Eldred M, Webster C, Constantine P. Evaluation of non-intrusive approaches for Wiener-Askey generalized polynomial chaos; 2008.
[27] Wan, X.; Karniadakis, G.E., Multi-element generalized polynomial chaos for arbitrary probability measures, SIAM J sci comput, 28, 3, 901-928, (2006) · Zbl 1128.65009
[28] Eppler, K.; Schmidt, S.; Schulz, V.; Ilic, C., Preconditioning the pressure tracking in fluid dynamics by shape Hessian information, J optimiz theory appl, 141, 3, 513-531, (2009) · Zbl 1178.49054
[29] Li, W.; Huyse, L.; Padula, S., Robust airfoil optimization to achieve drag reduction over a range of Mach numbers, Struct multidiscip optimiz, 24, 1, 38-50, (2002)
[30] Huyse, L.; Lewis, R.; Li, W.; Padula, S., Probabilistic approach to free-form airfoil shape optimization under uncertainty, Aiaa j, 40, 1764-1772, (2002)
[31] Padula S, Gumbert C, Li W. Aerospace applications of optimization under uncertainty. In: ISUMA ’03: proceedings of the 4th international symposium on uncertainty modelling and analysis. Washington (DC, USA): IEEE Computer Society; 2003. p. 286.
[32] Li W, Padula SL. Robust airfoil optimization in high resolution design space, Tech. rep., ICASE NASA Langley Research Centre; 2003.
[33] Floudas, C.; Stein, O., The adaptive convexification algorithm: a feasible point method for semi-infinite programming, SIAM J optimiz, 18, 4, 1187-1208, (2007) · Zbl 1216.90094
[34] Becker, R.; Braack, M.; Meidner, D.; Rannacher, R.; Vexler, B., Adaptive finite element methods for PDE-constrained optimal control problems, (), 177-205 · Zbl 1398.76196
[35] Ma, X.; Zabaras, N., An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations, J comput phys, 228, 8, 3084-3113, (2009) · Zbl 1161.65006
[36] Gerstner, T.; Griebel, M., Dimension-adaptive tensor-product quadrature, Computing, 71, 1, 65-87, (2003) · Zbl 1030.65015
[37] Garcke, J.; Griebel, M.; Thess, M., Data mining with sparse grids, Computing, 67, 3, 225-253, (2001) · Zbl 0987.62045
[38] Bungartz, H.-J.; Dirnstorfer, S., Multivariate quadrature on adaptive sparse grids, Computing, 71, 1, 89-114, (2003) · Zbl 1031.65037
[39] Klimke A. Uncertainty modeling using fuzzy arithmetic and sparse grids, Ph.D. thesis, Universität Stuttgart, Shaker Verlag, Aachen; 2006. · Zbl 1087.65063
[40] Garcke J. A dimension adaptive sparse grid combination technique for machine learning. In: Read W, Larson JW, Roberts AJ, editors. Proceedings of the 13th biennial computational techniques and applications conference, CTAC-2006. ANZIAM J. 2007; 48: C725-40. · Zbl 1334.68183
[41] Hazra, S.; Schulz, V.; Brezillon, J.; Gauger, N., Aerodynamic shape optimization using simultaneous pseudo-timestepping, J comput phys, 204, 1, 46-64, (2005) · Zbl 1143.76564
[42] Hazra, S.; Schulz, V., Simultaneous pseudo-timestepping for aerodynamic shape optimization problems with state constraints, SIAM J sci comput, 28, 3, 1078-1099, (2006) · Zbl 1130.49032
[43] Schulz, V.; Gherman, I., One-shot methods for aerodynamic shape optimization, (), 207-220
[44] Ito, K.; Kunisch, K.; Schulz, V.; Gherman, I., Approximate nullspace iterations for KKT systems, SIAM J matrix anal appl, 31, 4, 1835-1847, (2010) · Zbl 1203.65091
[45] Zymaris, A.S.; Papadimitriou, D.I.; Giannakoglou, K.C.; Othmer, C., Continuous adjoint approach to the spalart – allmaras turbulence model for incompressible flows, Comput fluids, 38, 1528-1538, (2009) · Zbl 1242.76064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.