×

Pitfalls and merits of cointegration-based mortality models. (English) Zbl 1431.91334

Summary: In recent years, joint modelling of the mortality of related populations has received a surge of attention. Several of these models employ cointegration techniques to link underlying factors with the aim of producing coherent projections, i.e. projections with non-diverging mortality rates. Often, however, the factors being analysed are not fully identifiable and arbitrary identification constraints are (inadvertently) allowed to influence the analysis thereby compromising its validity. Taking the widely used Lee-Carter model as an example, we point out the limitations and pitfalls of cointegration analysis when applied to semi-identifiable factors. On the other hand, when properly applied cointegration theory offers a rigorous framework for identifying and testing long-run relations between populations. Although widely used as a model building block, cointegration as an inferential tool is often overlooked in mortality analysis. Our aim with this paper is to raise awareness of the inferential strength of cointegration and to identify the time series models and hypotheses most suitable for mortality analysis. The concluding application to UK mortality shows by example the insights that can be obtained from a full cointegration analysis.

MSC:

91G05 Actuarial mathematics
91D20 Mathematical geography and demography

Software:

Human Mortality
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Arnold, S.; Sherris, M., International cause-specific mortality rates: New insights from a cointegration analysis, Astin Bull., 46, 1, 9-38 (2016) · Zbl 1390.62332
[2] Bergeron-Boucher, M.-P.; Canudas-Romo, V.; Oeppen, J.; Vaupel, J. W., Coherent forecasts of mortality with compositional data analysis, Demogr. Res., 37, 527-566 (2017)
[3] Beutner, E.; Reese, S.; Urbain, J.-P., Identifiability issues of age-period and age-period-cohort models of the Lee-Carter type, Insurance Math. Econom., 75, 117-125 (2017) · Zbl 1394.91188
[4] Breiman, L., Statistical modeling: The two cultures, Statist. Sci., 16, 3, 199-215 (2001) · Zbl 1059.62505
[5] Brouhns, N.; Denuit, M.; Vermunt, J., A Poisson log-bilinear regression approach to the construction of projected lifetables, Insurance Math. Econom., 31, 3, 373-393 (2002) · Zbl 1074.62524
[6] Cairns, A.; Blake, D.; Dowd, K., A two-factor model for stochastic mortality with parameter uncertainty: Theory and calibration, J. Risk Insurance, 73, 4, 687-718 (2006)
[7] Cairns, A.; Blake, D.; Dowd, K.; Coughlan, G.; Khalaf-Allah, M., Bayesian stochastic mortality modelling for two populations, Astin Bull., 41, 1, 29-59 (2011)
[8] Cairns, A.; Dowd, K.; Blake, D.; Coughlan, G. D., Longevity hedge effectiveness: a decomposition, Quant. Finance, 14, 2, 217-235 (2011) · Zbl 1294.91072
[9] Carter, L. R.; Lee, R. D., Modeling and forecasting US sex differentials in mortality, Int. J. Forecast., 8, 3, 393-411 (1992)
[10] Chen, R. Y.; Millossovich, P., Sex-specific mortality forecasting for UK countries: a coherent approach, Eur. Actuar. J., 8, 1, 69-95 (2018) · Zbl 1416.91163
[11] Currie, I., On fitting generalized linear and non-linear models of mortality, Scand. Actuar. J., 2016, 4, 356-383 (2016) · Zbl 1401.91123
[12] Darkiewicz, G.; Hoedemakers, T., How the Co-integration Analysis Can Help in Mortality Forecasting (2004), Katholieke Universiteit Leuven, Department of Applied Economics
[13] Dowd, K.; Cairns, A.; Blake, D.; Coughlan, G.; Khalaf-Allah, M., A gravity model of mortality rates for two related populations, N. Am. Actuar. J., 15, 2, 334-356 (2011) · Zbl 1228.91032
[14] Engle, R.; Granger, C., Co-integration and error correction: Representation, estimation, and testing, Econometrica, 55, 2, 251-276 (1987) · Zbl 0613.62140
[15] Gaille, S.; Sherris, M., Modelling mortality with common stochastic long-run trends, Geneva Pap. Risk Insur.- Issues Pract., 36, 4, 595-621 (2011)
[16] Hansen, P. R., Granger’s representation theorem: A closed-form expression for I(1) processes, Econometrics J., 8, 1, 23-38 (2005) · Zbl 1089.91065
[17] Human Mortality Database, ., 2019. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Data downloaded April 2019. http://www.mortality.org.
[18] Hunt, A.; Blake, D., Identifiability in Age/Period Mortality Models (WP) (2015), The Pensions Institute, Cass Business School, City University London, PI-1508
[19] Hunt, A.; Blake, D., Identifiability in Age/period/cohort Mortality Models (WP) (2015), The Pensions Institute, Cass Business School, City University London, PI-1509
[20] Hunt, A.; Blake, D., Modelling longevity bonds: Analysing the Swiss Re Kortis bond, Insurance Math. Econom., 63, 12-29 (2015) · Zbl 1348.91150
[21] Hunt, A.; Blake, D., Identifiability, cointegration and the gravity model, Insurance Math. Econom., 78, 360-368 (2017) · Zbl 1400.91248
[22] Hyndman, R.; Booth, H.; Yasmeen, F., Coherent mortality forecasting: The product-ratio method with functional time series models, Demography, 50, 261-283 (2013)
[23] Janssen, F.; van Wissen, L. J.; Kunst, A. E., Including the smoking epidemic in internationally coherent mortality projections, Demography, 50, 4, 1341-1362 (2013)
[24] Jarner, S.; Kryger, E., Modelling adult mortality in small populations: The saint model, Astin Bull., 41, 2, 377-418 (2011) · Zbl 1239.91128
[25] Johansen, S., Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models, Econometrica, 59, 6, 1551-1580 (1991) · Zbl 0755.62087
[26] Johansen, S., Likelihood-Based Inference in Cointegrated Vector Autoregressive Models (1995), Oxford University Press · Zbl 0928.62069
[27] Johansen, S.; Juselius, K., Testing structural hypotheses in a multivariate cointegration analysis of the PPP and the UIP for UK, J. Econometrics, 53, 1, 211-244 (1992) · Zbl 0850.62905
[28] Juselius, K., The Cointegrated VAR Model: Methodology and Applications (2006), Oxford University Press · Zbl 1258.91006
[29] Kleinow, T., A common age effect model for the mortality of multiple populations, Insurance Math. Econom., 63, 147-152 (2015) · Zbl 1348.91233
[30] Kuang, D.; Nielsen, B.; Nielsen, J., Forecasting with the age-period-cohort model and the extended chain-ladder model, Biometrika, 95, 4, 987-991 (2008) · Zbl 1437.62516
[31] Lazar, D.; Denuit, M., A multivariate time series approach to projected life tables, Appl. Stoch. Models Bus. Ind., 25, 6, 806-823 (2009) · Zbl 1224.91069
[32] Lee, R.; Carter, L., Modeling and forecasting U.S. mortality, J. Amer. Statist. Assoc., 87, 419, 659-675 (1992) · Zbl 1351.62186
[33] Li, J.; Hardy, M., Measuring basis risk in longevity hedges, N. Am. Actuar. J., 15, 2, 177-200 (2011) · Zbl 1228.91042
[34] Li, N.; Lee, R. D., Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method, Demography, 42, 3, 575-594 (2005)
[35] Li, H.; Lu, Y., Coherent forecasting of mortality rates: A sparse vector-autoregression approach, Astin Bull., 47, 2, 563-600 (2017) · Zbl 1390.62215
[36] Lindsey, J. K., Parametric Statistical Inference (1996), Oxford University Press · Zbl 0855.62002
[37] Nielsen, B.; Nielsen, J., Identification and forecasting in mortality models, Sci. World J., 2014 (2014) · Zbl 1328.62575
[38] Njenga, C. N.; Sherris, M., Longevity risk and the econometric analysis of mortality trends and volatility, Asia-Pac. J. Risk Insur., 5, 2 (2011), Article 2
[39] Phillips, P.; Perron, P., Testing for a unit root in time series regression, Biometrika, 75, 2, 335-346 (1988) · Zbl 0644.62094
[40] Said, S.; Dickey, D., Testing for unit roots in autoregressive-moving average models of unknown order, Biometrika, 71, 3, 599-607 (1984) · Zbl 0564.62075
[41] Salhi, Y.; Loisel, S., Basis risk modelling: A cointegration-based approach, Statistics, 51, 1, 205-221 (2017) · Zbl 1369.62285
[42] Shmueli, G., To explain or to predict?, Statist. Sci., 25, 3, 289-310 (2010) · Zbl 1329.62045
[43] Thatcher, A., The long-term pattern of adult mortality and the highest attained age, J. R. Stat. Soc. Ser. A, 162, 1, 5-43 (1999)
[44] Tuljapurkar, S.; Li, N.; Boe, C., A universal pattern of mortality decline in the G7 countries, Nature, 405, 6788, 789-792 (2000)
[45] Yang, S. S.; Wang, C.-W., Pricing and securitization of multi-country longevity risk with mortality dependence, Insurance Math. Econom., 52, 2, 157-169 (2013) · Zbl 1284.91556
[46] Zhou, R.; Wang, Y.; Kaufhold, K.; Johnny, L.; Tan, K., Modeling period effects in multi-population mortality models: Applications to solvency II, N. Am. Actuar. J., 18, 1, 150-167 (2014) · Zbl 1412.91060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.