×

Characterization of locally finite simple groups of type \(G_2\) over fields of odd characteristics in the class of periodic groups. (English. Russian original) Zbl 1432.20026

Math. Notes 105, No. 4, 513-518 (2019); translation from Mat. Zametki 105, No. 4, 519-525 (2019).
Summary: We prove that a periodic group is locally finite, given that each of its finite subgroups lies in a subgroup isomorphic to a finite simple group \(G_2\) of Lie type over a field of odd characteristic.

MSC:

20F50 Periodic groups; locally finite groups
20E32 Simple groups
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. W. Carter, Simple Groups of Lie Type (John Wiley & Sons, London, 1972). · Zbl 0248.20015
[2] Belyaev, V. V., Locally Finite Chevalley Groups, 39-50 (1984), Sverdlovsk · Zbl 0587.20019
[3] A. V. Borovik, “Embeddings of finite Chevalley groups and periodic linear groups,” Sib. Math. J. 24 (6), 26-35 (1983) [Sib. Math. J. 24 (6), 843-851 (1983)]. · Zbl 0551.20026
[4] B. Hartley and G. Shute, “Monomorphisms and direct limits of finite groups of Lie type,” Quart. J. Math. Oxford Ser. (2) 35 (137), 49-71 (1984). · Zbl 0547.20024
[5] S. Thomas, “The classification of the simple periodic linear groups,” Arch. Math. (Basel) 41 (2), 103-116 (1983). · Zbl 0518.20039
[6] M. J. Larsen and R. Pink, “Finite subgroups of algebraic groups,” J. Amer. Math. Soc. 24 (4), 1105-1158 (2011). · Zbl 1241.20054
[7] A. K. Shlepkin, “On some periodic groups saturated by finite simple groups,” Mat. Tr. 1 (1), 129-138 (1998) [Sib. Adv. in Math. 9 (2), 100-108 (1999)]. · Zbl 0905.20026
[8] A. G. Rubashkin and K. A. Filippov, “Periodic groups saturated with the groups <Emphasis Type=”Italic“>L2(<Emphasis Type=”Italic“>pn),” Sib. Math. J. 46 (6), 1388-1392 (2005) [Sib. Math. J. 46 (6), 1119-1122 (2005)]. · Zbl 1118.20039
[9] D. V. Lytkina and A. A. Shlepkin, “Periodic groups saturated with finite simple groups of types <Emphasis Type=”Italic“>U3 and <Emphasis Type=”Italic“>L3,” Algebra and Logic 55 (4), 441-448 (2016) [Algebra and Logic 55 (4), 289-294 (2016)].
[10] K. A. Filippov, Groups Saturated with Finite Non-Abelian Simple Groups and Their Extensions, Cand. Sci. (Phys.-Math.) Dissertation (Krasnoyarsk, 2005) [in Russian].
[11] K. A. Filippov, “On periodic groups saturated by finite simple groups,” Sib. Math. J. 53(2), 430-438 (2012) [Sib. Math. J. 53 (2), 345-351 (2012)].
[12] D. Gorenstein, Finite Groups (Chelsea Publ., New York, 1980). · Zbl 0463.20012
[13] J. H. Conway, R.T. Curtis, S. P. Norton, R.A. Parker and R. A. Wilson, Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Group (Clarendon Press, Oxford, 1985). · Zbl 0568.20001
[14] D. Gorenstein and K. Harada, “Finite simple groups of low 2-rank and the families <Emphasis Type=”Italic“>G2(<Emphasis Type=”Italic“>q), D42, <Emphasis Type=”Italic“>q odd,” Bull. Amer. Math. Soc. 77 (6), 829-862 (1971). · Zbl 0256.20014
[15] J. N. Bray, D. F. Holt, and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, in London Math. Soc. Lecture Note Ser. (Cambridge Univ. Press, Cambridge, 2013), Vol. 407. · Zbl 1303.20053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.