×

Review of experimental data on incompressible turbulent round jets. (English) Zbl 1432.76003

Summary: This article reviews measurements for the canonical flow: incompressible turbulent round jets issuing into a large, ideally infinite, quiescent domain. The available far-field data on mean velocity, momentum-flux conservation, Reynolds stresses and triple fluctuation correlations are presented. The budget equations for turbulent kinetic energy and for the individual Reynolds stresses are shown, including different formulations for dissipation and pressure-velocity correlations. Evidence of the persistence of source conditions in the self-preserving far field is observed in several cases. This article analyses and compares several data sets, obtained at different levels of detail, against analytical constraints, discusses limitations and provides insights aided by reference to recent numerical work. It is hoped that this will prove useful in guiding future experiments and numerical test cases, where complete details of the jet configuration are required for validation and comparison.

MSC:

76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics
76-05 Experimental work for problems pertaining to fluid mechanics
76F99 Turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] AGARD: Advisory Group for Aerospace Research & Development: A selection of test cases for the validation of large-eddy simulations of turbulent flows. Advisory Report No. 345. North Atlantic Treaty Organization, Neuilly-Sur-Seine, France (1998)
[2] Antonia, R.A., Satyaprakash, B.R., Hussain, A.K.M.F.: Measurements of dissipation rate and some other characteristics of turbulent plane and circular jets. Phys. Fluids 23(4), 695–700 (1980) · doi:10.1063/1.863055
[3] Boersma, B.J., Brethouwer, G., Nieuwstadt, F.T.M.: A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet. Phys. Fluids 10(4), 899–909 (1998) · doi:10.1063/1.869626
[4] Bogey, C., Bailly, C.: Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation. J. Fluid Mech. 627, 129–160 (2009) · Zbl 1171.76396 · doi:10.1017/S0022112009005801
[5] Burattini, P., Antonia, R.A., Danaila, L.: Similarity in the far field of a turbulent round jet. Phys. Fluids 17, 025101-1 (2005) · Zbl 1187.76076
[6] Chen, C.J., Rodi, W.: Vertical Turbulent Buoyant Jets: A Review of Experimental Data. Pergamon Press, Oxford and New York (1980)
[7] Ferrand, V., Bazile, R., Borée, J., Charnay, G.: Gas-droplet velocity correlations and two-phase interaction in an axisymmetric jet laden with partly responsive droplets. Int. J. Multiph. Flow 29, 195–217 (2003) · Zbl 1136.76506 · doi:10.1016/S0301-9322(02)00151-9
[8] Fellouah, H., Ball, C.G., Pollard, A.: Reynolds number effects within the development region of a turbulent round jet. Int. J. Heat Mass Transfer 52, 3943–3954 (2009) · doi:10.1016/j.ijheatmasstransfer.2009.03.029
[9] Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J., Brooks, N.H.: Mixing in Inland and Coastal Waters. Academic Press, San Diego (USA) (1979)
[10] George, W.K.: Is there a universal log law for turbulent wall-bounded flows? Phil. Trans. R. Soc. A 365, 789806 (2007) · Zbl 1152.76405
[11] George, W.K.: Is there an asymptotic effect of initial and upstream conditions on turbulence? In: Proceedings of the ASME 2008 Fluids Engineering Meeting: 2008 Freeman Lecture, Jacksonville, Florida, USA, 10–14 August 2008
[12] George, W.K.: The self-preservation of turbulent flows and its relation to initial conditions and coherent structures. In: George, W.K., Arndt, R. (eds.) Advances in Turbulence, pp. 39–73. Hemisphere (1989)
[13] George, W.K., Davidson, L.: Role of initial conditions in establishing asymptoting flow behaviour. AIAA J. 42(3), 438–446 (2004) · doi:10.2514/1.3459
[14] Grinstein, F.F.: On integrating large eddy simulation and laboratory turbulent flow experiments. Phil. Trans. R. Soc. A 367, 2831–2945 (2009) · Zbl 1185.76724
[15] Hussain, A.K.M.F., Zedan, M.F.: Effects of the initial condition on the axisymmetric free shear layer: effects of the initial momentum thickness. Phys. Fluids 21(7), 1100–1112 (1978) · doi:10.1063/1.862349
[16] Hussein, H.J., Capp, S.P., George, W.K.: Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 31–75 (1994) · doi:10.1017/S002211209400323X
[17] Kim, J., Choi, H.: Large eddy simulation of a circular jet: effect of inflow conditions on the near field. J. Fluid Mech. 620, 383–411 (2009) · Zbl 1156.76379 · doi:10.1017/S0022112008004722
[18] List, E.J.: Turbulent jets and plumes. Annu. Rev. Fluid Mech. 14, 189–212 (1982) · Zbl 0533.76055 · doi:10.1146/annurev.fl.14.010182.001201
[19] Mi, J., Nobes, D.S., Nathan, G.J.: Influence of jet exit conditions on the passive scalar field of an axisymmetric free jet. J. Fluid Mech. 432, 91–125 (2001) · Zbl 0969.76507
[20] Panchapakesan, N.R., Lumley, J.L.: Turbulence measurements in axisymmetric jet of air and helium. Part 1. Air jet. J. Fluid Mech. 246, 197–223 (1993) · doi:10.1017/S0022112093000096
[21] Papanicolaou, P.N., List, E.J.: Investigation of round vertical turbulent buoyant jet. J. Fluid Mech. 195, 341–391 (1988) · doi:10.1017/S0022112088002447
[22] Picano, F.: Dynamics of turbulent axisymmetric jets. Ph.D. thesis, Università degli studi ”La Sapienza”, Rome (2007) · Zbl 1182.76603
[23] Picano, F., Casciola, C.M.: Small-scale anisotropy and universality of axisymmetric jets. Phys. Fluids 19, 118106 (2007) · Zbl 1182.76603 · doi:10.1063/1.2804955
[24] Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2002) · Zbl 1185.76300
[25] Rodi, W.: A review of experimental data of uniform density free turbulent boundary layers. In: Launder, B.E. (ed.) Studies in Convection. Academic (1975)
[26] Shiri A, George WK, Naughton JW. Experimental study of the far field of incompressible swirling jets. AIAA J. 46(8), 2002–2009 (2008) · doi:10.2514/1.32954
[27] Taulbee, D.B., Hussein, H., Capp, S.: The round jet: experiment and inferences on turbulence modelling. In: Proc. 6th Symp. Turbulent Shear Flow., Toulouse (FR), 10 5 1–6 (1987)
[28] Wang, H., Law, A.W.: Second-order integral model for a round turbulent buoyant jet. J. Fluid Mech. 459, 397–428 (2002) · Zbl 0991.76509
[29] Wang, Z., He, P., Lv, Y., Zhou, J., Fan, J., Cen, K.: Direct numerical simulation of subsonic round turbulent jet. Flow Turbul. Combust. 84, 669–686 (2010) · Zbl 1402.76045 · doi:10.1007/s10494-010-9248-5
[30] Webster, D.R., Roberts, P.J.W., Ra’ad, L.: Simultaneous DPTV/PLIF measurements of a turbulent jet. Exp. Fluids 30(1), 65–72 (2001) · doi:10.1007/s003480000137
[31] Weisgraber, T.H., Liepmann, D.: Turbulent structure during transition to self-similarity in a round jet. Exp. Fluids 24, 210–224 (1998) · doi:10.1007/s003480050168
[32] Wygnanski, I., Fiedler, H.: Some measurements in the self-preserving jet. J. Fluid Mech. 38(3), 577–612 (1969) · doi:10.1017/S0022112069000358
[33] Xu, G., Antonia, R.: Effect of different initial conditions on a turbulent round free jet. Exp. Fluids 33(5), 677–683 (2002) · doi:10.1007/s00348-002-0523-7
[34] Ying, C., Davidson, M.J., Wang, H.W., Law, A.W.K.: Radial velocities in axisymmetric jets and plumes. J. Hydraul. Res. 42(1), 29–33 (2002) · doi:10.1080/00221686.2004.9641180
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.